


河南省新乡市辉县2023-2024学年数学八上期末联考试题含答案
展开
这是一份河南省新乡市辉县2023-2024学年数学八上期末联考试题含答案,共7页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=7,AC=6,则△ACE的周长为( )
A.8B.11C.13D.15
2.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
3.若一次函数与的图象交点坐标为,则解为的方程组是( )
A.B.C.D.
4.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠4
5.若等腰三角形的周长为,其中一边为,则该等腰三角形的底边长为( )
A.B.或C.或D.
6.下列计算正确的是( )
A.=2B.﹣=2
C.=1D.=3﹣2
7.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )
A.10°B.15°C.18°D.30°
8.某种细菌的半径是0.00000618米,用科学记数法把半径表示为( )
A.618×10﹣6B.6.18×10﹣7C.6.18×106D.6.18×10﹣6
9.如图,下列条件中,不能判断直线a∥b的是( )
A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°
10.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为( )
A.45°B.60°C.75°D.85°
二、填空题(每小题3分,共24分)
11.如图,在△ABC中,AC=AD=BD,当∠B=25°时,则∠BAC的度数是_____.
12.如图,是的角平分线,,垂足为,且交线段于点,连结,若,设,则关于的函数表达式为_____________.
13.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是_____.
14.如图所示的坐标系中,单位长度为1 ,点 B的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上, 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)
15.已知一次函数的图像经过点和,则_____(填“”、“”或“”).
16.已知点与点关于直线对称,那么等于______.
17.如图,已知在上两点,且,若,则的度数为________.
18.分解因式:x-x3=____________.
三、解答题(共66分)
19.(10分)为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.
求甲、乙两队单独完成这项工程各需多少天?
已知甲队每天的施工费用为万元,乙队每天的施工费用为万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?
20.(6分)某商场购进甲、乙两种商品,甲种商品共用了元,乙种商品共用了元.已知乙种商品每件进价比甲种商品每件进价多元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;
21.(6分)永州市在进行“六城同创”的过程中,决定购买两种树对某路段进行绿化改造,若购买种树2棵, 种树3棵,需要2700元;购买种树4棵, 种树5棵,需要4800元.
(1)求购买两种树每棵各需多少元?
(2)考虑到绿化效果,购进A种树不能少于48棵,且用于购买这两种树的资金不低于52500元.若购进这两种树共100棵.问有哪几种购买方案?
22.(8分)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.
23.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)
(1)求b,m的值
(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值
24.(8分)如图所示,已知点M(1,4),N(5,2),P(0,3),Q(3,0),过P,Q两点的直线的函数表达式为y=﹣x+3,动点P从现在的位置出发,沿y轴以每秒1个单位长度的速度向上移动,设移动时间为ts.
(1)若直线PQ随点P向上平移,则:
①当t=3时,求直线PQ的函数表达式.
②当点M,N位于直线PQ的异侧时,确定t的取值范围.
(2)当点P移动到某一位置时,△PMN的周长最小,试确定t的值.
(3)若点P向上移动,点Q不动.若过点P,Q的直线经过点A(x0,y0),则x0,y0需满足什么条件?请直接写出结论.
25.(10分)已知:y-2与x成正比例,且x=2时,y=4.
(1)求y与x之间的函数关系式;
(2)若点M(m,3)在这个函数的图象上,求点M的坐标.
26.(10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.
(1)求甲、乙两种型号的机器人每台的价格各是多少万元;
(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划最多用41万元购买8台这两种型号的机器人,则该公司该如何购买,才能使得每小时的分拣量最大?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、C
4、D
5、C
6、C
7、B
8、D
9、B
10、C
二、填空题(每小题3分,共24分)
11、105°
12、
13、
14、 (0,4),(1,2),(2,0),(4,4)
15、>
16、1
17、80
18、x(1+x)(1-x)
三、解答题(共66分)
19、乙队单独完成这项工程需20天,则甲队单独完成这项工作所需天数是60天; 10万元.
20、甲种商品的进价为每件元,乙种商品的进价为每件元.
21、(1)购买A种树苗每棵需要41元,B种树苗每棵需要600元;(2)有三种购买方案:第一种:A种树购买48棵,B种树购买52棵;第二种:A种树购买49棵,B种树购买51棵;第三种:A种树购买1棵,B种树购买1棵.
22、乙到达科技馆时,甲离科技馆还有1600m.
23、(1)-1;(2)或.
24、(1)①y=﹣x+6,②2<t<4;(2);(1)x0<1时,y0>﹣x+1,当x0>1时,y0<﹣x0+1.
25、(1)y=x+2;
(2)M(1,3).
26、(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)该公司购买甲型和乙型机器人分别是4台和4台才能使得每小时的分拣量最大.
相关试卷
这是一份河南省新乡市辉县市2023-2024学年八年级上学期期末数学试题,共13页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份2023-2024学年河南省新乡市辉县市九年级(上)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省新乡市辉县2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,对于函数,下列结论错误的是等内容,欢迎下载使用。
