湖北省浠水县联考2023-2024学年八上数学期末联考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.已知,,则与的大小关系为( )
A.B.C.D.不能确定
2.关于x的不等式有解,则a的取值范围是( )
A.a<3B.a≤3C.a≥3D.a>3
3.如果把分式中的和都扩大2倍,则分式的值( )
A.扩大4倍B.扩大2倍C.不变D.缩小2倍
4.两个三角形只有以下元素对应相等,不能判定两个三角形全等的( )
A.两角和一边B.两边及夹角C.三个角D.三条边
5.如图,将长方形的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形,已知,,则边的长是( )
A.B.C.D.
6.下列实数中最大的是( )
A.B.C.D.
7.如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则的值为()
A.2B.3C.4D.5
8.如图,∠ACB=900,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=( )
A.1cmB.0.8cmC.4.2cmD.1.5cm
9.在平面直角坐标系中,线段的端点分别为,将线段平移到,且点的坐标为(8,4),则线段的中点的坐标为( )
A.(7,6)B.(6,7)C.( 6,8) D.(8,6)
10.如图,在中,,是高,,,则的长为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,直线上有三个正方形,若的面积分别为5和11,则的面积为__________.
12.在中,,,,则________.
13.中,厘米,厘米,点为的中点,如果点在线段上以2厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动,若点的运动速度为厘米/秒,则当与全等时,的值为______厘米/秒.
14.关于x的分式方程无解,则m的值为_______.
15.对点的一次操作变换记为,定义其变换法则如下: ;且规定(为大于1的整数).如: ,,则__________.
16.平行四边形ABCD中,,对角线,另一条对角线BD的取值范围是_____.
17.如图:已知AB=AD,请添加一个条件使得△ABC≌△ADC,_______(不添加辅助线)
18.观察下列各等式:,,,…根据你发现的规律,计算:____.(为正整数)
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)将△A1B1C1沿x轴方向向左平移4个单位得到△A2B2C2,画出△A2B2C2并写出顶点A2,B2,C2的坐标.
20.(6分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.
(1)求证:∠ABE=∠ACD;
(2)求证:过点A、F的直线垂直平分线段BC.
21.(6分)如图,△ABC中,CE、AD分别垂直平分AB、BC,求△ABC各内角的大小.
22.(8分)如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.
(1)求证:∠A+∠C=∠B+D;
(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.
①以线段AC为边的“8字型”有 个,以点O为交点的“8字型”有 个;
②若∠B=100°,∠C=120°,求∠P的度数;
③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.
23.(8分)我校图书馆大楼工程在招标时,接到甲乙两个工程队的投标书,每施工一个月,需付甲工程队工程款16万元,付乙工程队12万元。工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:
(1)甲队单独完成此项工程刚好如期完工;
(2)乙队单独完成此项工程要比规定工期多用3个月;
(3)若甲乙两队合作2个月,剩下的工程由乙队独做也正好如期完工。
你觉得哪一种施工方案最节省工程款,说明理由。
24.(8分)已知点和关于轴对称且均不在轴上,试求的值.
25.(10分)如图,CD∥EF,AC⊥AE,且∠α和∠β的度数满足方程组
(1)求∠α和∠β的度数.
(2)求证:AB∥CD.
(3)求∠C的度数.
26.(10分)学校为美化环境,计划购进菊花和绿萝共盆,菊花每盆元,绿萝每盆元,若购买菊花和绿萝的总费用不超过元,则最多可以购买菊花多少盆?
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、B
4、C
5、C
6、D
7、B
8、B
9、A
10、B
二、填空题(每小题3分,共24分)
11、16
12、
13、2或1
14、1或6或
15、
16、
17、DC=BC(∠DAC=∠BAC)
18、
三、解答题(共66分)
19、(1)见详解;(2)图见详解,点A2,B2,C2的坐标分别为(﹣4,﹣1),(﹣1,﹣2),(﹣3,﹣4).
20、 (1)证明详见解析(2) 证明详见解析
21、各内角都是60°
22、 (1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.
23、方案(1)最节省工程款.理由见解析
24、3
25、(1)∠α和∠β的度数分别为55°,125°;(2)见解析;(3)∠C=35°.
26、最多可以购买菊花盆.
2023-2024学年湖北省浠水县联考九上数学期末检测模拟试题含答案: 这是一份2023-2024学年湖北省浠水县联考九上数学期末检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,若,则的值为等内容,欢迎下载使用。
湖北省黄冈浠水县联考2023-2024学年数学九上期末预测试题含答案: 这是一份湖北省黄冈浠水县联考2023-2024学年数学九上期末预测试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
湖北省孝感孝昌县联考2023-2024学年八上数学期末质量跟踪监视模拟试题含答案: 这是一份湖北省孝感孝昌县联考2023-2024学年八上数学期末质量跟踪监视模拟试题含答案,共6页。试卷主要包含了计算的值为,已知,那么的值为,某班50名同学的数学成绩为,下列各式运算正确的是等内容,欢迎下载使用。