福建省南平市建瓯市芝华中学2023-2024学年数学八年级第一学期期末质量检测模拟试题含答案
展开
这是一份福建省南平市建瓯市芝华中学2023-2024学年数学八年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,平方根等于它本身的数是,下列各式中,正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,△ABE≌△ACD,∠1=∠2,∠B=∠C,下列等式不一定正确的是( )
A.AB=ACB.∠BAD=∠CAEC.BE=CDD.AD=DE
2.设正比例函数的图象经过点,且的值随x值的增大而减小,则( )
A.2B.-2C.4D.-4
3.如图,,,,则的度数是( )
A.B.C.D.
4.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是( )
A.(x+a)(x+a)B.x2+a2+2ax
C.(x-a)(x-a)D.(x+a)a+(x+a)x
5.下列选项中,能使分式值为的的值是( )
A.B.C.或D.
6.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为( )
A.2B.﹣6C.5D.﹣3
7.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )
A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形
8.如图,已知,那么添加下列一个条件后,仍无法判定的是( )
A.B.C.D.
9.平方根等于它本身的数是( )
A.0B.1,0C.0, 1 ,-1D.0, -1
10.下列各式中,正确的是( )
A.3 >2B.a3 • a2=a6C.(b+2a) (2a -b) =b2 -4a2D.5m + 2m = 7m2
二、填空题(每小题3分,共24分)
11.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为 .
12.如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是_________.
13.如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,则△AnCnCn+1的周长为_______(n≥1,且n为整数).
14.我国许多城市的“灰霾”天气严重,影响身体健康.“灰霾”天气的最主要成因是直径小于或等于微米的细颗粒物(即),已知微米米,此数据用科学记数法表示为__________米.
15.在Rt△ABC中,,,,则=_____.
16.若-,则的取值范围是__________.
17.在△ABC中,将∠B、∠C按如图所示方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为折痕.若∠A=82°,则∠MGE=_____°.
18.如图,点P、M、N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PV⊥AC于点N,若AB=12cm,求CM的长为______cm.
三、解答题(共66分)
19.(10分)化简求值
(1)求的值,其中,;
(2)求的值,其中.
20.(6分)计算:
(1); (2)
21.(6分)如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P点.
22.(8分)如图,在平面直角坐标系中,直线与 轴,轴分别交于, 两点,点为直线 上一点,直线 过点.
(1)求和的值;
(2)直线 与 轴交于点,动点 在射线 上从点 开始以每秒 1 个单位的速度运动.设点 的运动时间为秒;
①若的面积为,请求出与 之间的函数关系式,并写出自变量 的取值范围;
②是否存在 的值,使得 ?若存在,请求出 的值;若不存在,请说明理由.
23.(8分)在等边中,点是线段的中点,与线段相交于点与射线相交于点.
如图1,若,垂足为求的长;
如图2,将中的绕点顺时针旋转一定的角度,仍与线段相交于点.求证:.
如图3,将中的继续绕点顺时针旋转一定的角度,使与线段的延长线交于点作于点,若设,写出关于的函数关系式.
24.(8分)尺规作图:如图,要在公路旁修建一个货物中转站,分别向、两个开发区运货.
(1)若要求货站到、两个开发区的距离相等,那么货站应建在那里?
(2)若要求货站到、两个开发区的距离和最小,那么货站应建在那里?
(分别在图上找出点,并保留作图痕迹.)
25.(10分)小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程与所用时间之间的函数关系.试根据函数图像解答下列问题:
(1)小明在途中停留了____,小明在停留之前的速度为____;
(2)求线段的函数表达式;
(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,时,两人同时到达乙地,求为何值时,两人在途中相遇.
26.(10分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠BFD的度数.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、C
4、C
5、D
6、B
7、B
8、C
9、A
10、A
二、填空题(每小题3分,共24分)
11、130°
12、.
13、
14、
15、1
16、
17、1
18、4
三、解答题(共66分)
19、(1),15;(2), .
20、(1);(2)
21、见解析
22、(1),;(2) ①;②的值为4或1.
23、(1)BE=1;(2)见解析;(3)
24、(1)答案见解析;(2)答案见解析.
25、(1)2,10;(2)s=15t-40;(3)t=3h或t=6h.
26、(1)证明见解析;(2).
相关试卷
这是一份2023-2024学年福建省南平市建瓯市芝华中学九上数学期末学业水平测试模拟试题含答案,共8页。
这是一份福建省建瓯市芝华中学2023-2024学年数学九年级第一学期期末质量检测试题含答案,共8页。
这是一份2023-2024学年福建省建瓯市芝华中学数学八上期末质量跟踪监视试题含答案,共8页。