浙江省平阳县2023-2024学年数学八年级第一学期期末学业水平测试模拟试题含答案
展开这是一份浙江省平阳县2023-2024学年数学八年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了已知,则的值为,在式子,,,中,分式的个数是,下列各数中是无理数的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.在下列长度的各组线段中,能组成三角形的是( )
A.1,2,4B.1,4,9C.3,4,5D.4,5,9
2.下列计算正确的是( )
A.a2•a3=a5B.(a3)2=a5C.(3a)2=6a2D.
3.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其全等的依据是( )
A.SASB.ASAC.AASD.SSS
4.已知图中的两个三角形全等,则∠α等于( )
A.72°B.60°C.58°D.48°
5.已知,则的值为( )
A.B.C.D.
6.如图,在四边形中,点是边上的动点,点是边上的定点,连接,分别是的中点,连接.点在由到运动过程中,线段的长度( )
A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大
7.已知A,B两点关于轴对称,若点A坐标为(2,-3),则点B的坐标是( )
A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,3)
8.如图,已知,那么添加下列一个条件后,仍无法判定的是( )
A.B.C.D.
9.在式子,,,中,分式的个数是( )
A.1B.2C.3D.4
10.下列各数中是无理数的是( )
A.3B.C.D.
二、填空题(每小题3分,共24分)
11.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点的坐标为,另一个顶点的坐标为,则点的坐标为_______.
12.若,,则的值为__________.
13.直线y=2x-6与y轴的交点坐标为________.
14.在平面直角坐标系中,孔明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除,余数为1时,则向右走1个单位长度;当n被3除,余数为2时,则向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是 .
15.若a2+b2=19,a+b=5,则ab=_____.
16.如图,小颖同学折叠一个直角三角形的纸片,使与重合,折痕为,若已知,,则的长为________.
17.已知:,,则__________.
18.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为_____小时.
三、解答题(共66分)
19.(10分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面真角坐标系,已知格点三角形(三角形的三个顶点都在格点上)
(1)画出关于直线对称的;并写出点、、的坐标.
(2)在直线上找一点,使最小,在图中描出满足条件的点(保留作图痕迹),并写出点的坐标(提示:直线是过点且垂直于轴的直线)
20.(6分)小明平时喜欢玩“开心消消乐”游戏,本学期在学校组织的几次数学反馈性测试中,小明的数学成绩如下表:
(1)以月份为x轴,成绩为y轴,根据上表提供的数据在平面直角坐标系中描点;
(2)观察(1)中所描点的位置关系,猜想与之间的的函数关系,并求出所猜想的函数表达式;
(3)若小明继续沉溺于“开心消消乐“游戏,照这样的发展趋势,请你估计元月(此时)份的考试中小明的数学成绩,并用一句话对小明提出一些建议.
21.(6分)先化简,再求值.,从这个数中选取一个合适的数作为的值代入求值.
22.(8分)如图,(1)在网格中画出关于y轴对称的;
(2)在y轴上确定一点P,使周长最短,(只需作图,保留作图痕迹)
(3)写出关于x轴对称的的各顶点坐标;
23.(8分)如图,在平面直角坐标系中,,,且, 满足,直线经过点和.
(1) 点的坐标为( , ), 点的坐标为( , );
(2)如图1,已知直线经过点 和轴上一点, ,点在直线AB上且位于轴右侧图象上一点,连接,且.
①求点坐标;
②将沿直线AM 平移得到,平移后的点与点重合,为 上的一动点,当的值最小时,请求出最小值及此时 N 点的坐标;
(3)如图 2,将点向左平移 2 个单位到点,直线经过点和,点是点关于轴的对称点,直线经过点和点,动点从原点出发沿着轴正方向运动,连接,过点作直线的垂线交轴于点,在直线上是否存在点,使得是等腰直角三角形?若存在,求出点坐标.
24.(8分)我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相対于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象问答问题:
(1)①直线l1与直线l2中 表示B到海岸的距离与追赶时间之间的关系
②A与B比较, 速度快;
③如果一直追下去,那么B (填能或不能)追上A;
④可疑船只A速度是 海里/分,快艇B的速度是 海里/分
(2)l1与l2对应的两个一次函数表达式S1=k1t+b1与S2=k2t+b2中,k1、k2的实际意义各是什么?并直接写出两个具体表达式
(3)15分钟内B能否追上A?为什么?
(4)当A逃离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?
25.(10分)如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,DE=1cm,求BD的长.
26.(10分)阅读题:在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了。有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:因式分解的结果为,当时,,此时可以得到数字密码1.
(1)根据上述方法,当时,对于多项式分解因式后可以形成哪些数字密码?(写出三个).
(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为,求出一个由多项式分解因式后得到的密码(只需一个即可).
(3)若多项式因式分解后,利用本题的方法,当时可以得到其中一个密码为2434,求的值.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、D
4、D
5、A
6、A
7、D
8、C
9、B
10、B
二、填空题(每小题3分,共24分)
11、
12、
13、(0,-6)
14、(100,33)
15、1
16、
17、
18、
三、解答题(共66分)
19、(1)图详见解析,A1(3,2),B1(0,1),C1(1,4);(2)点D坐标为(-1,2).
20、(1)见解析; (2)y与x之间的函数关系式为:y=-10x+180; (3)估计元月份期末考试中小明的数学成绩是50分;建议:希望小明不要再沉溺于“开心消消乐”游戏,努力学习,提高学习成绩.
21、;当时,原式=3
22、(1)图见解析;(2)图见解析;(3).
23、(1)-1,0;0,-3;(2)①点;②点,最小值为;(3)点的坐标为或或.
24、(1)①直线l1,②B,③能,④0.2,0.5;(2)k1、k2的实际意义是分别表示快艇B的速度和可疑船只的速度,S1=0.5t,S2=0.2t+5;(3)15分钟内B不能追上A,见解析;(4)B能在A逃入公海前将其拦截,见解析
25、4cm
26、(1)211428,212814或142128;(2)48100;(3)
月份
(第二年元月)
(第二年2月)
成绩(分)
···
···
相关试卷
这是一份浙江省湖州市2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,在下列命题中,正确的是,在中,,则的长为,下列函数中,是的反比例函数的是等内容,欢迎下载使用。
这是一份期浙江省金华市2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,点P,如图,在中,,,等内容,欢迎下载使用。
这是一份2023-2024学年浙江省Q21联盟数学八年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了已知点A的坐标为等内容,欢迎下载使用。