重庆市江北区新区联盟2023-2024学年八上数学期末联考试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.人字梯中间一般会设计一“拉杆”,这样做的道理是( )
A.两点之间,线段最短B.垂线段最短
C.两直线平行,内错角相等D.三角形具有稳定性
2.将点M(-5,y)向上平移6个单位长度后得到的点与点M关于x轴对称,则y的值是( )
A.-6B.6C.-3D.3
3.若正多边形的内角和是,则该正多边形的一个外角为( )
A.B.C.D.
4.如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为( )
A.20°B.50°C.60°D.70°
5.若,则的值是 ( )
A.B.C.3D.6
6.关于函数的图像,下列结论正确的是( )
A.必经过点(1,2)B.与x轴交点的坐标为(0,-4)
C.过第一、三、四象限D.可由函数的图像平移得到
7.下列二次根式中,是最简二次根式的是( )
A.B.C.D.
8.某文化用品商店分两批购进同一种学生用品,已知第二批购进的数量是第一批购进数量的3倍,两批购进的单价和所用的资金如下表:
则求第一批购进的单价可列方程为( )
A.B.
C.D.
9.下列命题中,是假命题的是( )
A.如果一个等腰三角形有两边长分别是1,3,那么三角形的周长为7
B.等腰三角形的高、角平分线和中线一定重合
C.两个全等三角形的面积一定相等
D.有两条边对应相等的两个直角三角形一定全等
10.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有( )
A.1个B.2个C.3个D.4个
二、填空题(每小题3分,共24分)
11.若,则分式的值为____.
12.一个大型商场某天销售的某品牌的运动鞋的数量和尺码如下表:
这些鞋的尺码组成的一组数据的中位数是_______.
13.若最简二次根式与是同类二次根式,则a=_____.
14.试写出一组勾股数___________________.
15.如图在3×3的正方形网格中有四个格点A.B.C.D,以其中一点为原点,网格线所在直线为坐标轴建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是____点.
16.中,,,交于,交于,点是的中点.以点为原点,所在的直线为轴构造平面直角坐标系,则点的横坐标为________.
17.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.
18.计算:-=________.
三、解答题(共66分)
19.(10分)如图,在长度为1个单位的小正方形网格中,点、、在小正形的顶点上.
(1)在图中画出与关于直线成轴对称的;
(2)在直线上找一点(在图中标出,不写作法,保留作图痕迹),使的长最小,并说明理由.
20.(6分)如图,一次函数的图像与轴交于点,与轴交于点,且与正比函数的图像交于点,结合图回答下列问题:
(1)求的值和一次函数的表达式.
(2)求的面积;
(3)当为何值时,?请直接写出答案.
21.(6分)已知:是等边三角形,D是直线BC上一动点,连接AD,在线段AD的右侧作射线DP且使∠ADP=30°,作点A关于射线DP的对称点E,连接DE、CE.
(1)当点D在线段BC上运动时,如图,请用等式表示线段AB、CE、CD之间的数量关系,并证明;
(2)当点D在直线BC上运动时,请直接写出AB、CE、CD之间的数量关系,不需证明.
22.(8分)如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.
(1)求证:BF=AC;
(2)若BF=3,求CE的长度.
23.(8分)已知中,,,过顶点作射线.
(1)当射线在外部时,如图①,点在射线上,连结、,已知,,().
①试证明是直角三角形;
②求线段的长.(用含的代数式表示)
(2)当射线在内部时,如图②,过点作于点,连结,请写出线段、、的数量关系,并说明理由.
24.(8分)在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17= ,12×14﹣6×20= ,不难发现,结果都是 .
(1)请将上面三个空补充完整;
(2)请你利用整式的运算对以上规律进行证明.
25.(10分)已知,,求下列代数式的值.
(1)
(2)
26.(10分)某地教育局为了解该地八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:
请根据图中提供的信息,回答下列问题:
(1)___________,并写出该扇形所对圆心角的度数为___________,请补全条形统计图.
(2)在这次抽样调查中,众数为___________,中位数为___________.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、C
4、B
5、A
6、C
7、B
8、B
9、B
10、C
二、填空题(每小题3分,共24分)
11、-2
12、23.1
13、-1
14、3、4、1(答案不唯一).
15、B点
16、
17、1
18、1
三、解答题(共66分)
19、(1)图见解析;(2)图见解析,理由见解析
20、 (1) ;(2) ;(3) .
21、(1)AB=CE+CD,见解析;(2)当点D在线段CB上时,AB=CE+CD;当点D在CB的延长线上时,AB=CD-CE,当点D在BC延长线上时,AB=CE-CD.
22、(1)见解析;(2)CE=.
23、(1)①详见解析;(2)();(2),理由详见解析.
24、(1)1,1,1;(2)证明见解析.
25、(1)9;(2)80
26、(1),,见解析;(2)5天,6天
单价(元)
所用资金(元)
第一批
2000
第二批
6300
2023-2024学年重庆市江北区新区联盟八上数学期末检测试题含答案: 这是一份2023-2024学年重庆市江北区新区联盟八上数学期末检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,关于的一元二次方程的根的情况为,对于命题“已知等内容,欢迎下载使用。
2023-2024学年重庆市江北区巴蜀中学数学八上期末统考模拟试题含答案: 这是一份2023-2024学年重庆市江北区巴蜀中学数学八上期末统考模拟试题含答案,共7页。试卷主要包含了下列说法正确的是,的立方根是等内容,欢迎下载使用。
重庆江南新区联盟2023-2024学年数学八上期末联考试题含答案: 这是一份重庆江南新区联盟2023-2024学年数学八上期末联考试题含答案,共8页。