


重庆市万州国本中学2023-2024学年八上数学期末质量检测模拟试题含答案
展开
这是一份重庆市万州国本中学2023-2024学年八上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各式与相等的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.对于实数a、b定义一种运算“※”,规定a※b=,如1※3=,则方程※(﹣2)=的解是( )
A.B.C.D.
2.计算结果为x2﹣y2的是( )
A.(﹣x+y)(﹣x﹣y)B.(﹣x+y)(x+y)
C.(x+y)(﹣x﹣y)D.(x﹣y)(﹣x﹣y)
3.如图,中,、的垂直平分线分别交于、,则( )
A.B.
C.D.
4.已知直线y=-x+4与y=x+2如图所示,则方程组的解为( )
A.B.C.D.
5.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是( )
A.-=20B.-=20C.-=D.=
6.下列各式中,能运用“平方差公式”进行因式分解的是( )
A.B.C.D.
7.下列各式与相等的是( )
A.B.C.D.
8.用计算器依次按键,得到的结果最接近的是( )
A.B.C.D.
9.已知点A和点B,以点A和点B为两个顶点作等腰直角三角形,则一共可作出 ( )
A.3个B.4个C.6个D.7个
10.若一个多边形的内角和为1080°,则这个多边形的边数为( )
A.6B.7C.8D.9
二、填空题(每小题3分,共24分)
11.计算10ab3÷5ab的结果是_____.
12.对于两个非零代数式,定义一种新的运算:x@y=.若x@(x﹣2)=1,则x=____.
13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是_____.
14.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________
15.若将进行因式分解的结果为,则=_____.
16.一个n边形的内角和为1080°,则n=________.
17.如果方程有增根,那么______.
18.若10m=5,10n=4,则102m+n﹣1=_____.
三、解答题(共66分)
19.(10分)如图,圆柱的底面半径为,圆柱高为,是底面直径,求一只蚂蚁从点出发沿圆柱表面爬行到点的最短路线,小明设计了两条路线:
路线1:高线底面直径,如图所示,设长度为.
路线2:侧面展开图中的线段,如图所示,设长度为.
请按照小明的思路补充下面解题过程:
(1)解:
;
(2)小明对上述结论有些疑惑,于是他把条件改成:“圆柱底面半径为,高为”继续按前面的路线进行计算.(结果保留)
①此时,路线1:__________.路线2:_____________.
②所以选择哪条路线较短?试说明理由.
20.(6分)如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线,交于点C.
(1)求点D的坐标;
(2)求直线的解析表达式;
(3)求△ADC的面积;
(4)在直线上存在一点P,使得△ADP的面积是△ADC面积的2倍,请直接写出点P的坐标.
21.(6分)先化简,再求值(1),其中;
(2),其中,.
22.(8分)如图与x轴相交于点A,与y轴交于点B,
求A、B两点的坐标;
点为x轴上一个动点,过点C作x轴的垂线,交直线于点D,若线段,求a的值.
23.(8分)如图1,在长方形中,,,点在线段上以的速度由向终点运动,同时,点在线段上由点向终点运动,它们运动的时间为.
(解决问题)
若点的运动速度与点的运动速度相等,当时,回答下面的问题:
(1);
(2)此时与是否全等,请说明理由;
(3)求证:;
(变式探究)
若点的运动速度为,是否存在实数,使得与全等?若存在,请直接写出相应的的值;若不存在,请说明理由.
24.(8分)如图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.
25.(10分)如图,,,、在上,,,求证:.
26.(10分)如图,长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的,连结AD,AF,FD.
(1)若△ADF的面积是,△ABD的面积是6,求△ABD的周长;
(2)设△ADF的面积是S1,四边形DBGF的面积是S2,试比较2S1与S2的大小,并说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、D
4、B
5、C
6、B
7、B
8、C
9、C
10、C
二、填空题(每小题3分,共24分)
11、1b1.
12、.
13、(﹣2,﹣3)
14、120°或75°或30°
15、-1
16、1
17、-1
18、1
三、解答题(共66分)
19、(1)见解析;(2)①. ,②选择路线2较短,理由见解析.
20、(1)D(1,0);(2);(3) ;(4)P1(8,6)或P2(0,-6).
21、(1)x2-8,-6;(2)a-b,-1
22、 (1)A,B;(2)1或.
23、解决问题(1)1;(2)全等;(3)见解析;变式探究:1或.
24、见解析
25、见解析
26、(1)12;(2),见解析
相关试卷
这是一份重庆市万州国本中学2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了如图等内容,欢迎下载使用。
这是一份重庆市万州新田中学2023-2024学年数学八上期末质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中是无理数的是,2-3的倒数是,若,则下列式子错误的是等内容,欢迎下载使用。
这是一份2023-2024学年重庆市万州三中学数学八上期末质量检测试题含答案,共7页。试卷主要包含了的算术平方根是等内容,欢迎下载使用。
