2023-2024学年四川省成都武侯区六校联考八上数学期末调研模拟试题含答案
展开
这是一份2023-2024学年四川省成都武侯区六校联考八上数学期末调研模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,若,则等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.下列几组数中,为勾股数的是( )
A.4,5,6B.12,16,18
C.7,24,25D.0.8,1.5,1.7
2.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( )
A.诚B.信C.友D.善
3.下列运算正确的是( )
A.B.=C.D.
4.如果把分式中的a、b同时扩大为原来的2倍,那么得到的分式的值( )
A.不变B.扩大为原来的2倍C.缩小到原来的D.扩大为原来的4倍.
5.已知分式的值为0,那么x的值是( )
A.﹣1B.﹣2C.1D.1或﹣2
6.将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )
A.45°
B.50°
C.60°
D.75°
7.以下列各组数据为边长作三角形,其中能组成直角三角形的是( ).
A.3,5,3B.4,6,8C.7,24,25D.6,12,13
8.若,则( )
A.B.C.D.
9.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A.B.2C.D.2
10.以下列数据为长度的三条线段,能组成三角形的是( )
A.2 cm、3cm、5cmB.2 cm、3 cm、4 cm
C.3 cm、5 cm、9 cmD.8 cm、4 cm、4 cm
11.若关于的分式方程无解,则的值为( )
A.1B.C.1或0D.1或
12.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤SBDE:S△ACD=BD:AC,其中正确的个数( )
A.5个B.4个C.3个D.2个
二、填空题(每题4分,共24分)
13.已知P(a,b),且ab<0,则点P在第_________象限.
14.若不等式组有解,则的取值范围是____.
15.如图,在RtABC中,∠C= 90°,BD是ABC的平分线,交AC于D,若CD = n,AB = m,则ABD的面积是_______.
16.等腰三角形中,两条边长分别为4cm和5cm,则此三角形的周长为 ____cm.
17.如图所示,是由截面相同的长方形墙砖粘贴的部分墙面,根据图中信息可得每块墙砖的截面面积是__________.
18.一组数据为:5,﹣2,3,x,3,﹣2,若每个数据都是这组数据的众数,则这组数据的中位数是_____.
三、解答题(共78分)
19.(8分)如图,等腰三角形中,,,AD为底边BC上的高,动点从点D出发,沿DA方向匀速运动,速度为,运动到点停止,设运动时间为,连接BP.(0≤t≤8)
(1)求AD的长;
(2)设△APB的面积为y(cm²),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使得S△APB:S△ABC=1:3,若存在,求出的值;若不存在,说明理由.
(4)是否存在某一时刻,使得点P在线段AB的垂直平分线上,若存在,求出的值;若不存在,说明理由.
20.(8分)解决下列两个问题:
(1)如图1,在△ABC中,AB=3,AC=4,BC=1.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;
解:PA+PB的最小值为 .
(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)
21.(8分)已知:如图,点、、、在一条直线上,、两点在直线的同侧,,,.
求证:.
22.(10分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)
(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.
23.(10分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,路板一尺离地,送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑话欢嬉,良工高师素好奇,算出索长有几?”翻译成现代文的大意是:如图.秋千静挂时,踏板离地的高度是尺,现在兑出两步(两步算作尺,故尺)的水平距离到的位置,有人记录踏板离地的高度为尺.仕女佳人争着荡秋千,一整天都欢声笑语,工匠师傅们好奇的是秋千绳索有多长呢﹖请你来解答工匠师傅们的困惑,求出秋千绳索的长度.
24.(10分)老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:
(1)求所捂部分化简后的结果:
(2)原代数式的值能等于-1吗?为什么?
25.(12分)已知,从小明家到学校,先是一段上坡路,然后是一段下坡路,且小明走上坡路的平均速度为每分钟走60m,下坡路的平均速度为每分钟走90m,他从家里走到学校需要21min,从学校走到家里需要24min,求小明家到学校有多远.
26.(12分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:
()若商场预计进货款为元,则这两种台灯各购进多少盏?
()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、B
4、B
5、B
6、D
7、C
8、D
9、C
10、B
11、D
12、C
二、填空题(每题4分,共24分)
13、二,四
14、
15、
16、13或1
17、
18、1
三、解答题(共78分)
19、(1)8;(2)y=1﹣3t(0≤t≤8);(3)存在,;(4)存在,
20、(1)3;(2)见解析
21、见解析
22、(1)见解析;(2)12.
23、秋千绳索长14.1尺
24、(1);(2)不能,理由见解析.
25、小明家到学校有1620m.
26、(1)购进型台灯盏,型台灯25盏;
(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.
相关试卷
这是一份四川省成都市武侯区西蜀实验学校2023-2024学年九上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中正确的是,下列说法错误的是,若,,则的值为等内容,欢迎下载使用。
这是一份四川省成都武侯区六校联考2023-2024学年九上数学期末检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份2023-2024学年四川省成都高新区四校联考数学九上期末调研试题含答案,共8页。