2023-2024学年天津市和平区第二十中学数学八上期末联考试题含答案
展开
这是一份2023-2024学年天津市和平区第二十中学数学八上期末联考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各式等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.实数、、、在数轴上的位置如图所示,下列关系式不正确的是( )
A.B.C.D.
2.有两块面积相同的试验田,分别收获蔬菜和,已知第一块试验田每亩收获蔬菜比第二块少,则第一块试验田每亩收获蔬菜为( )
A.B.C.D.
3.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )
A.2mnB.(m+n)2C.(m-n)2D.m2-n2
4.若a>b,则下列各式中一定成立的是( )
A.ma>mbB.c2a>c2b
C.1﹣a>1﹣bD.(1+c2)a>(1+c2)b
5.甲骨文是中国的一种古代文字,又称“契文”、“甲骨卜辞”、“殷墟文字”或“龟甲兽骨文”,是汉字的早期形式,是现存中国王朝时期最古老的一种成熟文字,如图为甲骨文对照表中的部分内容,其中可以抽象为轴对称图形的甲骨文对应的汉字是( )
A.方B.雷C.罗D.安
6.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点,第次接着运动到点,第次接着运动到点,···,按这样的运动规律,经过第次运动后,动点的坐标是( )
A.B.C.D.
7.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=12,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则BQ+QP的最小值是( )
A.4B.5C.6D.7
8.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是( )
A.①②B.①③C.②③D.②④
9.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为( )
A.65°B.70°C.75°D.85°
10.已知xm=6,xn=3,则x2m―n的值为( )
A.9B.C.12D.
11.下列平面图形中,不是轴对称图形的是( )
A.B.C.D.
12.下列计算正确的是( )
A.B.C.D.·
二、填空题(每题4分,共24分)
13.若3,2,x,5的平均数是4,则x= _______.
14.如图,点B在点A的南偏西方向,点C在点A的南偏东方向,则的度数为______________.
15.计算 =_____.
16.某校对1200名学生的身高进行了测量,身高在1.58~1.63(单位:)这一个小组的频率为0.25,则该组的人数是________.
17.已知x2-2(m+3)x+9是一个完全平方式,则m=____________.
18.如图,△ABC中,∠ACB=90°,AC≤BC,将△ABC沿EF折叠,使点A落在直角边BC上的D点处,设EF与AB、AC边分别交于点E、点F,如果折叠后△CDF与△BDE均为等腰三角形,那么∠B=_____.
三、解答题(共78分)
19.(8分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.
乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.
(1)求如图所示的y与x的函数解析式:(不要求写出定义域);
(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.
20.(8分)为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况,小卫在全校范围内随机抽取了若干名学生,就某日午饭浪费饭菜情况进行了调查.调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩余;D.饭和菜都有剩余.根据调查结果,绘制了如下两幅不完整的统计图.
回答下列问题:
(1)扇形统计图中,“B组”所对应的圆心角的度数是_______;
(2)补全条形统计图;
(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?.
21.(8分)太原市积极开展“举全市之力,创建文明城市”活动,为年进人全国文明城市行列莫定基础.某小区物业对面积为平方米的区域进行了绿化,整项工程由甲、乙两个林队先后接力完成,甲园林队每天绿化平方米,乙园林队每天绿化平方米,两队共用天.求甲乙两个园林队在这项绿化工程中分别工作了多少天.
22.(10分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.
23.(10分)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发xh后,两人相距ykm,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.
(1)根据图中信息,求出点Q的坐标,并说明它的实际意义;
(2)求甲、乙两人的速度.
24.(10分)在平面直角坐标系中,点A、B分别在x轴和y轴的正半轴上,OA=OB,AB=6.
(1)求AB所在直线的函数表达式;
(2)如图,以OA,OB为边在第一象限作正方形OACB,点M(x,0)是x轴上的动点,连接BM.
①当点M在边OA上时,作点O关于BM的对称点O′,若点O′ 恰好落在AB上,求△OBM的面积;
②将射线MB绕点M顺时针旋转45°得到射线MN,射线MN与正方形OACB边的交点为N.若在点M的运动过程中,存在x的值,使得△MBN为等腰三角形,请直接写出x所有可能的结果.
25.(12分)(1)问题发现:如图(1),已知:在三角形中,,,直线经过点,直线,直线,垂足分别为点,试写出线段和之间的数量关系为_________________.
(2)思考探究:如图(2),将图(1)中的条件改为:在中, 三点都在直线上,并且,其中为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.
(3)拓展应用:如图(3),是三点所在直线上的两动点,(三点互不重合),点为平分线上的一点,且与均为等边三角形,连接,若,试判断的形状并说明理由.
26.(12分)如图,△ABC中,AB=AC,∠A=108°.
(1)实践与操作:作AB的垂直平分线DE,与AB,BC分别交于点D,E(用尺规作图.保留作图痕迹,不要求写作法)
(2)推理与计算:求∠AEC的度数.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、C
4、D
5、C
6、B
7、C
8、A
9、A
10、C
11、A
12、D
二、填空题(每题4分,共24分)
13、6
14、;
15、10
16、1.
17、-6或1.
18、45°或30°
三、解答题(共78分)
19、(1)y=5x+1.(2)乙.
20、(1)12°;(2)见解析;(3)这日午饭有剩饭的学生人数是150人,将浪费1.5千克米饭
21、甲园林队工作了天,乙园林队工作了天.
22、;当x=2时,原式=-1.
23、(1)Q(1.5,0),意义:甲、乙两人分别从A,B两地同时出发后,经过1.5小时两人相遇;(2)甲、乙的速度分别为12km/h、8km/h
24、(1)y= -x+6;(2)① S△BOM=;②当-6≤x≤0,x=6,x=时,△MBN为等腰三角形.
25、(1)DE=CE+BD;(2)成立,理由见解析;(3)△DEF为等边三角形,理由见解析.
26、 (1)见解析;(2)72°
相关试卷
这是一份天津市和平区第二十中学2023-2024学年九上数学期末监测试题含答案,共7页。试卷主要包含了在四张完全相同的卡片上,抛物线可由抛物线如何平移得到的等内容,欢迎下载使用。
这是一份天津市和平区2023-2024学年八上数学期末综合测试试题含答案,共7页。试卷主要包含了如图,,,,则对于结论等内容,欢迎下载使用。
这是一份2023-2024学年天津市和平区二十中学数学八年级第一学期期末检测试题含答案,共7页。试卷主要包含了下列说法中,错误的是,计算,若4x2+,若分式有意义,则a满足的条件是等内容,欢迎下载使用。