2023-2024学年山东省济南市济阳区八上数学期末质量检测模拟试题含答案
展开
这是一份2023-2024学年山东省济南市济阳区八上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了点P,现有7张如图1的长为a,宽为b,用科学记数法表示为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是( )
A.∠COP=∠DOPB.PC=PDC.OC=ODD.∠COP=∠OPD
2.下列四个图形中轴对称图形的个数是( )
A.1B.2C.3D.4
3.如图,数轴上的点A表示的数是-2,点B表示的数是1,于点B,且,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为( )
A.B.C.D.2
4.将一组数,2,,2,,…,2,按下列方式进行排列:
,2,,2,;
2,,4,3,2;
…
若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为( )
A.(5,4)B.(4,4)C.(4,5)D.(3,5)
5.点P(-2,-3)关于x轴的对称点为( )
A.B.C.D.
6.多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为( )
A.6条B.8条C.9条D.12条
7.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是( )
A.30°B.15°C.20°D.35°
8.现有7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )
A.a=2bB.a=3bC.a=3.5bD.a=4b
9.一个直角三角形的三边长为三个连续偶数,则它的三边长分别是( )
A.2,4,6B.4,6,8C.3,4,5D.6,8,10
10.用科学记数法表示为( )
A.B.C.D.
11.如图,,,,则的度数是( )
A.B.C.D.
12.如图,在中,平分,,,则的度数为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,有一张长方形纸片,,.先将长方形纸片折叠,使边落在边上,点落在点处,折痕为;再将沿翻折,与相交于点,则的长为___________.
14.如图1所示,S同学把一张6×6的正方形网格纸向上再向右对折两次后按图画实线,剪去多余部分只留下阴影部分,然后展开摊平在一个平面内得到了一幅剪纸图案.T同学说:“我不用剪纸,我直接在你的图1②基础上,通过‘逆向还原’的方式依次画出相应的与原图形成轴对称的图形也能得出最后的图案.”画图过程如图2所示.
对于图3中的另一种剪纸方式,请仿照图2中“逆向还原”的方式,在图4①中的正方形网格中画出还原后的图案,并判断它与图2中最后得到的图案是否相同.
答:□相同;□不相同.(在相应的方框内打勾)
15.不等式组的解集为__________
16.已知,在中,,,为中点,则__________.
17.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为______.
18.在平面直角坐标系中,点(-1,2)关于y轴对称的点的坐标是 .
三、解答题(共78分)
19.(8分)已知:如图,在长方形中,,动点从点出发,以每秒的速度沿方向向点运动,动点从点出发,以每秒的速度沿向点运动,同时出发,当点停止运动时,点也随之停止,设点运动的时间为秒.请回答下列问题:
(1)请用含的式子表达的面积,并直接写出的取值范围.
(2)是否存在某个值,使得和全等?若存在,请求出所有满足条件的值;若不存在,请说明理由.
20.(8分)如图(1),在ABC中,,BC=9cm, AC=12cm, AB=15cm.现有一动点P,从点A出发,沿着三角形的边ACCBBA运动,回到点A停止,速度为3cm/s,设运动时间为t s.
(1)如图(1),当t=______时,△APC的面积等于△ABC面积的一半;
(2)如图(2),在△DEF中,,DE=4cm, DF=5cm, . 在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着ABBCCA运动,回到点A停止.在两点运动过程中的某一时刻,恰好,求点Q的运动速度.
21.(8分)精准扶贫,助力苹果产业大发展.甲、乙两超市为响应党中央将消除贫困和实现共同富裕作为重要的奋斗目标,到种植苹果的贫困山区分别用元以相同的进价购进质量相同的苹果.甲超市的销售方案:将苹果按大小分类包装销售,其中大苹果千克,以进价的倍价格销售,剩下的小苹果以高于进价的销售.乙超市的销售方案:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利元(包含人工工资和运费).
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
22.(10分)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.
十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子和分解因式,如图:
;
.
请你仿照以上方法,探索解决下列问题:
(1)分解因式:;
(2)分解因式:.
23.(10分)如图,已知在中,,,,是上的一点,,点从点出发沿射线方向以每秒个单位的速度向右运动.设点的运动时间为.连结.
(1)当秒时,求的长度(结果保留根号);
(2)当为等腰三角形时,求的值;
(3)过点做于点.在点的运动过程中,当为何值时,能使?
24.(10分)龙人文教用品商店欲购进、两种笔记本,用160元购进的种笔记本与用240元购进的种笔记本数量相同,每本种笔记本的进价比每本种笔记本的进价贵10元.
(1)求、两种笔记本每本的进价分别为多少元?
(2)若该商店准备购进、两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进种笔记本多少本?
25.(12分)如图,点A、C、D、B在同一条直线上,且
(1)求证:
(2)若,求的度数.
26.(12分)如图,在平面直角坐标系中有一个,顶点,,.
(1)画出关于y轴的对称图形(不写画法);
(2)点关于轴对称的点的坐标为__________,点关于轴对称的点的坐标为__________;
(3)若网格上每个小正方形的边长为1,求的面积?
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、C
4、B
5、D
6、C
7、A
8、B
9、D
10、B
11、C
12、A
二、填空题(每题4分,共24分)
13、
14、不相同.
15、
16、1
17、5
18、(1,2)
三、解答题(共78分)
19、(1)(0
相关试卷
这是一份山东省济南市济阳县2023-2024学年九上数学期末调研试题含答案,共8页。试卷主要包含了下列运算中,计算结果正确的是,当函数是二次函数时,a的取值为,一5的绝对值是等内容,欢迎下载使用。
这是一份2023-2024学年山东省济南市济阳区九上数学期末检测试题含答案,共7页。试卷主要包含了下列事件中,是必然事件的是,如图的中,,且为上一点等内容,欢迎下载使用。
这是一份山东省济南市章丘区2023-2024学年八上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是假命题的是等内容,欢迎下载使用。