2023-2024学年广东阳江市阳春八甲中学八上数学期末质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.2 的平方根是 ( )
A.2B.-2C.D.
2.下列二次根式是最简二次根式的( )
A.B.C.D.
3.如图,△ABC≌△ADE,∠B=25°,∠E=105°,∠EAB=10°,则∠BAD为( )
A.50°B.60°C.80°D.120°
4.如图所示,在△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至点G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是 ( )
A.8+2aB.8aC.6+aD.6+2a
5.三个正方形的位置如图所示,若,则 ( )
A.B.C.D.
6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
A.AB∥DC,AD∥BCB.AB=DC,AD=BC
C.AO=CO,BO=DOD.AB∥DC,AD=BC
7.如图,从标有数字1,2,3.4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是( )
A.1B.2C.3D.4
8.命题“邻补角的和为”的条件是( )
A.两个角的和是B.和为的两角为邻补角
C.两个角是邻补角D.邻补角的和是
9.下列运算正确的是( )
A.3a–2a= 1B.a2·a3=a6 C.(a–b)2=a2–2ab+b2D.(a+b)2=a2+b2
10.某手机公司接到生产万部手机的订单,为尽快交货.…,求每月实际生产手机多少万部?在这道题目中,若设每月实际生产手机万部,可得方程,则题目中“…”处省略的条件应是( )
A.实际每月生产能力比原计划提高了,结果延期个月完成
B.实际每月生产能力比原计划提高了,结果提前个月完成
C.实际每月生产能力比原计划降低了,结果延期个月完成
D.实际每月生产能力比原计划降低了,结果提前个月完成
11.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )
A.B.
C.D.
12.已知,点在内部,点与点关于对称,点与点关于对称,则是( )
A.含30°角的直角三角形B.顶角是30°的等腰三角形
C.等边三角形D.等腰直角三角形
二、填空题(每题4分,共24分)
13.如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.
14.据印刷工业杂志社报道,纳米绿色印刷技术突破了传统印刷技术精度和材料种类的局限,可以在硅片上印刷出10纳米(即为0.000 000 01米)量级的超高精度导电线路,将0.000 000 01用科学记数法表示应为___________.
15.如图,y=k1x+b1与y=k2x+b2交于点A,则方程组的解为______.
16.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于_____.
17.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.
18.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为__________.
三、解答题(共78分)
19.(8分)如图1,直线分别与轴、轴交于、两点,平分交于点,点为线段上一点,过点作交轴于点,已知,,且满足.
(1)求两点的坐标;
(2)若点为中点,延长交轴于点,在的延长线上取点,使,连接.
①与轴的位置关系怎样?说明理由;
②求的长;
(3)如图2,若点的坐标为,是轴的正半轴上一动点,是直线上一点,且的坐标为,是否存在点使为等腰直角三角形?若存在,求出点的坐标;若不存在,说明理由.
20.(8分)如图,,平分,于,交于,若,则______.
21.(8分)已知:如图所示,△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线段BD、CE,垂足分别D、E.
(1)求证:DE=BD+CE.
(2)如果过点A的直线经过∠BAC的内部,那么上述结论还成立吗?请画出图形,直接给出你的结论(不用证明).
22.(10分)如图,在中,∠.
(1)尺规作图:作的平分线交于点;(不写作法,保留作图痕迹)
(2)已知,求的度数.
23.(10分)(1)化简:
(2)设S=,a为非零常数,对于每一个有意义的x值,都有一个S的值对应,可得下表:
仔细观察上表,能直接得出方程的解为 .
24.(10分)现有3张边长为的正方形纸片(类),5张边长为的矩形纸片(类),5张边长为的正方形纸片(类).
我们知道:多项式乘法的结果可以利用图形的面积表示.
例如:就能用图①或图②的面积表示.
(1)请你写出图③所表示的一个等式:_______________;
(2)如果要拼一个长为,宽为的长方形,则需要类纸片_____张,需要类纸片_____张,需要类纸片_____张;
(3)从这13张纸片中取出若干张,每类纸片至少取出一张,把取出的这些纸片拼成一个正方形(按原纸张进行无缝隙,无重叠拼接),则拼成的正方形的边长最长可以是_______(用含的式子表示).
25.(12分)已知,求代数式的值.
26.(12分)已知:如图,点E在直线DF上,点B在直线AC上,.
求证:
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、B
4、D
5、A
6、D
7、B
8、C
9、C
10、B
11、D
12、C
二、填空题(每题4分,共24分)
13、1
14、
15、
16、75°
17、3.1
18、
三、解答题(共78分)
19、(1)点A的坐标为(3,0),点B的坐标为(0,6);(2)①BG⊥y轴,理由见解析;②;(3)存在,点E的坐标为(0,4)
20、1
21、(1)见解析;(2)上述结论不成立.
22、(1)见解析;(2)30°
23、(1);(2)x=7或x=﹣1
24、(1);(2)1,4,3;(3)
25、
26、见解析.
x
…
﹣3
﹣2
﹣1
1
3
5
6
7
…
S
…
2
2
…
广东阳江市阳春八甲中学2023-2024学年数学九年级第一学期期末达标检测试题含答案: 这是一份广东阳江市阳春八甲中学2023-2024学年数学九年级第一学期期末达标检测试题含答案,共8页。
广东省阳江市阳春八甲中学2023-2024学年数学九上期末考试试题含答案: 这是一份广东省阳江市阳春八甲中学2023-2024学年数学九上期末考试试题含答案,共8页。试卷主要包含了若与的相似比为1等内容,欢迎下载使用。
2023-2024学年广东省阳江市阳春八甲中学数学八年级第一学期期末复习检测试题含答案: 这是一份2023-2024学年广东省阳江市阳春八甲中学数学八年级第一学期期末复习检测试题含答案,共6页。试卷主要包含了下列运算正确的是,有理数的算术平方根是等内容,欢迎下载使用。