2023-2024学年江苏省兴化市顾庄区八上数学期末质量检测模拟试题含答案
展开
这是一份2023-2024学年江苏省兴化市顾庄区八上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,平面直角坐标系内,点A,我们规定等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则拼成长方形的面积是( )
A.B.
C.mD.
2.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有( )
A.4次B.3次C.2次D.1次
3.某公司有学徒工和熟练工两个工种的工人,已知一个学徒工每天制造的零件比一个熟练少个,一个学徒工与两个熟练工每天共可制造个零件,求一个学徒工与 一个熟练工每天各能制造多少个零件?设一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题意可列方程组为( )
A.B.
C.D.
4.点都在直线上,则与的大小关系是( )
A.B.C.D.不能比较
5.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布. 以下是参选的会徽设计的一部分图形,其中是轴对称图形的是( )
A.B.C.D.
6.平面直角坐标系内,点A(-2,-3)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
7.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y(升)与它工作时间t(时)之间函数关系的图象是( )
A.B.
C.D.
8.我们规定:表示不超过的最大整数,例如:,,,则关于和的二元一次方程组的解为( )
A.B.C.D.
9.如图,在△ABC 中,AB=AC,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是
A.50°B.80°C.100°D.130°
10.若≌,则根据图中提供的信息,可得出的值为( )
A.30B.27C.35D.40
11.某地区开展“二十四节气”标识系统设计活动,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )
A.B.
C.D.
12.在平面直角坐标系中,点(1,-2)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(每题4分,共24分)
13.比较大小:__________5
14.计算:=_____.
15.请写出一个小于4的无理数:________.
16.分式方程=的解为_____.
17.在平面直角坐标系中,点A(﹣1,0)、B(3,0)、C(0,2),当△ABC与△ABD全等时,则点D的坐标可以是_____.
18.如图,=,=,∠=∠,∠1=35°,∠2=30°,则∠3=_____度.
三、解答题(共78分)
19.(8分)小明的妈妈在菜市场买回3斤萝卜,2斤排骨,准备做萝卜排骨汤,妈妈说:“今天买这两样菜共花了78.7元,去年这时买3斤萝卜,2斤排骨只要43元”.爸爸说:“报纸上说了萝卜的单价下降10%,排骨单价上涨90%”,请你来算算,小明的妈妈去年买的萝卜和排骨的单价分别是多少?
20.(8分)如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,若S△ABD=12,求DF的长.
21.(8分) “中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通 过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛, 每位参赛学生听写个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数绘制成了以下不完整的统计图.
根据以上信息回答下列问题:
(1)补全频数分布直方图;
(2)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;
(3)该校共有名学生,如果听写正确的汉字个数不少于个定位良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.
22.(10分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.
(1)求作∠ABC的平分线,分别交AD,AC于E,F两点;(要求:尺规作图,保留作图痕迹,不写作法)
(2)证明:AE=AF.
23.(10分)在方格纸中的位置如图1所示,方格纸中的每个小正方形的边长为1个单位长度.
(1)图1中线段的长是___________;请判断的形状,并说明理由.
(2)请在图2中画出,使,,三边的长分别为,,.
(3)如图3,以图1中的,为边作正方形和正方形,连接,求的面积.
24.(10分)在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于点A(–a,0)、点 B(0, b),且 a、b 满足a2+b2–4a–8b+20=0,点 P 在直线 AB 的右侧,且∠APB=45°.
(1)a= ;b= .
(2)若点 P 在 x 轴上,请在图中画出图形(BP 为虚线),并写出点 P 的坐标;
(3)若点 P 不在 x 轴上,是否存在点P,使△ABP 为直角三角形?若存在,请求出此时P的坐标;若不存在,请说明理由.
25.(12分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.
(1)第一批手机壳的进货单价是多少元?
(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?
26.(12分)如图,已知在平面直角坐标系中,△ABC三个顶点的坐标分别是A(1,1),B (4,2),C(3,4).
(1)画出△ABC关于y轴对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应);
(2)通过画图,在x轴上确定点Q,使得QA与QB之和最小,画出QA与QB,并直接写出点Q的坐标.点Q的坐标为 .
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、A
4、A
5、B
6、C
7、D
8、A
9、C
10、A
11、D
12、D
二、填空题(每题4分,共24分)
13、<
14、
15、答案不唯一如,等
16、x=5
17、(0,﹣2)或(2,﹣2)或(2,2)
18、65
三、解答题(共78分)
19、小明的妈妈去年买的萝卜的单价为1元/斤,排骨的单价为20元/斤.
20、DF=1.
21、(1)见解析;(2)23个;(3)810
22、 (1)见解析;(2)证明见解析.
23、(1)AB=,△ABC为直角三角形;(2)见解析;(3)5
24、(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2).
25、(1)8元;(2)1元.
26、(1)见解析;(2)见解析,(2,0)
听写正确的汉字个数
组中值
相关试卷
这是一份江苏省兴化市顾庄区2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了如图所示的工件,其俯视图是,方程的根的情况是,下列方程中没有实数根的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省兴化市顾庄区四校九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了抛物线y=的对称轴方程为,下列事件是必然事件的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省兴化市顾庄区三校数学九上期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,下图中,不是中心对称图形的是等内容,欢迎下载使用。