2023-2024学年江苏省苏州市虎丘区立达中学数学八上期末教学质量检测试题含答案
展开
这是一份2023-2024学年江苏省苏州市虎丘区立达中学数学八上期末教学质量检测试题含答案,共7页。试卷主要包含了命题“邻补角的和为”的条件是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.计算的结果为( )
A.m﹣1B.m+1C.D.
2.已知为整数,且分式的值为整数,则满足条件的所有整数的和是( )
A.-4B.-5C.1D.3
3.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④5,12,13,其中可以构成直角三角形的有( )
A.1组B.2组C.3组D.4组
4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是( )
A.AE=DFB.∠A=∠DC.∠B=∠CD.AB= CD
5.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足,则点P到B、C两点距离之和最小时,∠PBC的度数为( )
A.30°B.45°C.60°D.90°
6.要使分式有意义,则x的取值范围是 ( )
A.x≠1B.x>1C.x<1D.x≠
7.如图,ABC 中,∠C=90°,AC=3,AB = 5,点 D 是边BC 上一点, 若沿将ACD翻折,点C刚好落在边上点E处,则BD等于()
A.2B.C.3D.
8.如图,在中,,将沿直线翻折,点落在点的位置,则的度数是( )
A.B.C.D.
9.如图,等腰三角形ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则下列结论错误的是( )
A.∠EBC为36°B.BC = AE
C.图中有2个等腰三角形D.DE平分∠AEB
10.命题“邻补角的和为”的条件是( )
A.两个角的和是B.和为的两角为邻补角
C.两个角是邻补角D.邻补角的和是
11.已知,则a+b+c的值是( )
A.2B.4C.±4D.±2
12.在下列数字宝塔中,从上往下数,2018在_____层等式的______边.
1+2=3
4+5+6=7+8
9+10+11+12=13+14+15
16+17+18+19+20=21+22+23+24
正确的答案是( )
A.44,左B.44,右C.45,左D.45,右
二、填空题(每题4分,共24分)
13.已知,则____.
14.已知,且,,,…,,请计算__________(用含在代数式表示).
15.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=8,则△ABC的周长为______.
16.当________时,分式无意义.
17.如图,学校大门口的电动伸缩门,其中间部分都是四边形的结构,这是应用了四边形的______.
18.为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的和分别表示去年和今年的水费(元)和用水量()之间的函数关系图像.如果小明家今年和去年都是用水150,要比去年多交水费________元.
三、解答题(共78分)
19.(8分)已知:,,若x的整数部分是m,y的小数部分是n,求的值
20.(8分)计算:3a3b·(-1ab)+(-3a1b)1.
21.(8分)如图,在平面直角坐标系中,每个小正方形网格的边长为1,和关于点成中心对称.
(1)画出对称中心,并写出点的坐标______.
(2)画出绕点顺时针旋转后的;连接,可求得线段长为______.
(3)画出与关于点成中心对称的;连接、,则四边形是______;(填属于哪一种特殊四边形),它的面积是______.
22.(10分)计算
(1)26
(2)(2)2﹣(2)(2)
23.(10分)如图,把长方形纸片放入平面直角坐标系中,使分别落在轴的的正半轴上,连接,且,.
(1)求点的坐标;
(2)将纸片折叠,使点与点重合(折痕为),求折叠后纸片重叠部分的面积;
(3)求所在直线的函数表达式,并求出对角线与折痕交点的坐标.
24.(10分)新春佳节来临之际,某商铺用1600元购进一款畅销礼盒,由于面市后供不应求,决定再用6000元购进同款礼盒,已知第二次购进的数量是第一次的3倍,但是第二次的单价比第一次贵2元.求第一次与第二次各购进礼盒多少个?
25.(12分)如图①所示是一个长为,宽为的长方形,沿图中虚线用剪刀均分成相等个小长方形.然后按图②的方式拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于 ;
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:
方法① ;
方法② ;
(3)观察图②,写出,,这三个代数式之间的等量关系: ;
(4)根据(3)题中的等量关系,解决如下问题:若,,求的值?
26.(12分)已知直线AB:y=kx+b经过点B(1,4)、A(5,0)两点,且与直线y=2x-4交于点C.
(1)求直线AB的解析式并求出点C的坐标;
(2)求出直线y=kx+b、直线y=2x-4及与y轴所围成的三角形面积;
(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x-4于点Q,若线段PQ的长为3,求点P的坐标.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、C
4、D
5、B
6、A
7、B
8、D
9、C
10、C
11、D
12、B
二、填空题(每题4分,共24分)
13、
14、
15、1
16、=1
17、不稳定性
18、210
三、解答题(共78分)
19、19-13
20、
21、(1)作图见解析,;(2)作图见解析,;(3)平行四边形,1
22、(1);(2).
23、(1)A(8,0),C(0,4);(2)10;(3)y=2x-6,(4,2)
24、第一次购进200个礼盒,第二次购进600个礼盒.
25、(1)m﹣n;(2)(m﹣n)2;(m+n)2﹣4mn;(3)(m﹣n)2=(m+n)2﹣4mn;(4)1.
26、(1)y=-x+5;点C(3,2);(2)S=;(3)P点坐标为(2,3)或(4,1).
相关试卷
这是一份江苏省苏州市虎丘区立达中学2023-2024学年九上数学期末检测模拟试题含答案,共7页。试卷主要包含了如图,该几何体的主视图是,已知,则等于,对于二次函数,下列说法正确的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省苏州市立达中学数学九上期末考试试题含答案,共7页。试卷主要包含了如图所示,在中,,,,则长为,已知,则下列各式不成立的是,下列函数属于二次函数的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省苏州市草桥实验中学数学八上期末教学质量检测试题含答案,共7页。试卷主要包含了下列各式从左到右的变形正确的是,计算等内容,欢迎下载使用。