2023-2024学年浙江省舟山市名校八上数学期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.下列各多项式从左到右变形是因式分解,并分解正确的是( )
A.m2﹣n2+2=(m+n)(m﹣n)+2B.(x+2) (x+3)=x2+5x+6
C.4a2﹣9b2=(4a﹣9b) (4a+9b)D.(a﹣b)3﹣b(b﹣a)2=(b﹣a)2(a﹣2b)
2.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于( )
A.63°B.113°C.55°D.62°
3.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则BC的长是( )
A.B.2C.D.
4.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是
A.8B.9C.10D.12
5.若式子在实数范围内有意义,则x的取值范围是( )
A.x≥B.x>C.x≥D.x>
6.在△ABC中,∠A-∠B=35°,∠C=55°,则∠B等于( )
A.50°B.55°C.45°D.40°
7.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是( )
A.(0,1)B.(2,﹣1)C.(4,1)D.(2,3)
8.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学计数法表示为
A.6.5×107 B.6.5×10-6C.6.5×10-8D.6.5×10-7
9.如图,已知,,,,则下列结论错误的是( )
A.B.C.D.
10.如图,在△ABC中,∠C=63°,AD是BC边上的高,AD=BD,点E在AC上,BE交AD于点F,BF=AC,则∠AFB的度数为( ).
A.27°B.37°C.63°D.117°
11.在Rt△ABC中,以两直角边为边长的正方形面积如图所示,则AB的长为( )
A.49B.C.3D.7
12.菱形的一个内角是60°,边长是,则这个菱形的较短的对角线长是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.用四舍五入法将2.056精确到十分位的近似值为________.
14.化简:的结果是______.
15.若a=2019,b=2020,则[a2(a﹣2b)﹣a(a﹣b)2]÷b2的值为_____.
16.探索题:已知(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,(x﹣1)(x4+x3+x2+x+1)=x5﹣1.则22018+22017+22016+…+23+22+2+1的值的个位数是_____.
17.如图,有一张长方形纸片,,.先将长方形纸片折叠,使边落在边上,点落在点处,折痕为;再将沿翻折,与相交于点,则的长为___________.
18.已知x,y满足方程的值为_____.
三、解答题(共78分)
19.(8分)如图,在中,,,点是上一动点,连结,过点作,并且始终保持,连结.
(1)求证:;
(2)若平分交于,探究线段之间的数量关系,并证明.
20.(8分)如图,两条射线BA∥CD,PB和PC分别平分∠ABC和∠DCB,AD过点P,分别交AB,CD与点A,D.
(1)求∠BPC的度数;
(2)若S△ABP为a,S△CDP为b,S△BPC为c,求证:a+b=c.
21.(8分)如图,三个顶点的坐标分别为,,.
(1)画出关于轴对称的图形,并写出三个顶点的坐标;
(2)在轴上作出一点,使的值最小,求出该最小值.(保留作图痕迹)
22.(10分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:
解:将方程②变形:,即③
把方程①代入③得:,∴,
所代入①得,∴方程组的解为,
请你解决以下问题:
(1)模仿小军的“整体代换”法解方程组,
(2)已知满足方程组,求的值和的值.
23.(10分)如图,在中,点M为BC边上的中点,连结AM,D是线段AM上一点(不与点A重合).过点D作,过点C作,连结AE.
(1)如图1,当点D与M重合时,求证:
①;
②四边形ABDE是平行四边形.
(2)如图2,延长BD交AC于点H,若,且,求的度数.
24.(10分)多好佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果.
(1)第一次水果的进价是每千克多少元?
(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?
25.(12分)某单位欲从内部招聘管理人员一名,对甲乙丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:
根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权,每位职工只能推荐1人)如图所示,每得一票记作1分.
(1)请算出三人的民主评议得分;
(2)根据实际需要,单位将笔试,面试,民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?
26.(12分)如图1,△ABC中,AD是∠BAC的角平分线,AE⊥BC于点E.
(1)若∠C=80°,∠B=40°,求∠DAE的度数;
(2)若∠C>∠B,试说明∠DAE=(∠C-∠B);
(3)如图2,若将点A在AD上移动到A′处,A′E⊥BC于点E.此时∠DAE变成∠DA′E,请直接回答:(2)中的结论还正确吗?
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、D
4、A
5、A
6、C
7、C
8、D
9、B
10、D
11、D
12、B
二、填空题(每题4分,共24分)
13、2.1
14、
15、﹣1.
16、7
17、
18、
三、解答题(共78分)
19、(1)见解析;(2),见解析
20、(1)90°;(2)证明过程见解析;
21、(1)见解析,;(2)见解析,.
22、(1);(2);
23、(1)①见解析;②见解析;(2).
24、 (1) 2元;(2) 盈利了8241元.
25、(1)甲:50分;乙:80分;丙:70分;(2)丙
26、(1)∠DAE=15°;(2)见解析;(3)正确.
浙江省舟山市名校2023-2024学年九上数学期末考试模拟试题含答案: 这是一份浙江省舟山市名校2023-2024学年九上数学期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,在比例尺为1等内容,欢迎下载使用。
浙江省湖州市2023-2024学年八上数学期末达标检测试题含答案: 这是一份浙江省湖州市2023-2024学年八上数学期末达标检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中计算结果为的是,若关于的分式方程无解,则的值是,满足下列条件的是直角三角形的是等内容,欢迎下载使用。
河南省许昌市名校2023-2024学年八上数学期末达标检测试题含答案: 这是一份河南省许昌市名校2023-2024学年八上数学期末达标检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列长度的线段能组成三角形的是,若把分式,已知正比例函数,点向左平移2个单位后的坐标是等内容,欢迎下载使用。