所属成套资源:新教材2023版高中数学新人教B版选择性必修第三册课时作业(23份)
高中6.3 利用导数解决实际问题精练
展开
这是一份高中6.3 利用导数解决实际问题精练,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a为3或5时,点P的轨迹分别是( )
A.双曲线和一条直线
B.双曲线和一条射线
C.双曲线的一支和一条直线
D.双曲线的一支和一条射线
2.下列各选项中,与=1共焦点的双曲线是( )
A.=1B.=1
C.=1D.=1
3.已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )
A.B.
C.D.
4.若方程=3表示焦点在y轴上的双曲线,则m的取值范围是( )
A.(1,2) B.(2,+∞)
C.(-∞,-2) D.(-2,2)
二、填空题
5.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:+y2=1内切,则动圆圆心M的轨迹方程是________.
6.已知双曲线=1的两个焦点分别为F1,F2,若双曲线上的点P到点F1的距离为12,则点P到点F2的距离为________.
7.已知双曲线=1的一个焦点是(0,2),椭圆=1的焦距等于4,则n=________.
三、解答题
8.已知F为双曲线C:=1的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,求△PQF的周长.
9.已知双曲线=1的左、右焦点分别为F1,F2.
(1)若点M在双曲线上,且=0,求点M到x轴的距离;
(2)若双曲线C与已知双曲线有相同焦点,且过点(3,2),求双曲线C的方程.
[尖子生题库]
10.已知方程kx2+y2=4,其中k∈R,试就k的不同取值讨论方程所表示的曲线类型.
课时作业(二十一) 双曲线的标准方程
1.解析:依题意得|F1F2|=10,当a=3时,2a=60,,1-m>0,))解得:m<-2.
答案:C
5.解析:设动圆M的半径为r.
因为动圆M与圆C1外切且与圆C2内切,
所以|MC1|=r+3,|MC2|=r-1.
相减得|MC1|-|MC2|=4.
又因为C1(-3,0),C2(3,0),并且|C1C2|=6>4,
所以点M的轨迹是以C1,C2为焦点的双曲线的右支,
且有a=2,c=3.
所以b2=5,所求的轨迹方程为eq \f(x2,4)-eq \f(y2,5)=1(x≥2).
答案:eq \f(x2,4)-eq \f(y2,5)=1(x≥2)
6.解析:设F1为左焦点,F2为右焦点,当点P在双曲线左支上时,|PF2|-|PF1|=10,|PF2|=22;当点P在双曲线右支上时,|PF1|-|PF2|=10,|PF2|=2.
答案:2或22
7.解析:因为双曲线的焦点是(0,2),所以双曲线的标准方程是eq \f(y2,-3m)-eq \f(x2,-m)=1,即a2=-3m,b2=-m,c2=-4m=4,即m=-1,所以椭圆方程是eq \f(y2,n)+x2=1,因为焦距2c=4,所以c2=4,即n-1=4,解得n=5.
答案:5
8.解析:由eq \f(x2,9)-eq \f(y2,16)=1得a=3,b=4,c=5.
∴|PQ|=4b=16>2a.
又∵A(5,0)在线段PQ上,
∴P,Q在双曲线的右支上,
且PQ所在直线过双曲线的右焦点,
由双曲线定义知eq \b\lc\{(\a\vs4\al\c1(|PF|-|PA|=2a=6,,|QF|-|QA|=2a=6,))
∴|PF|+|QF|=28.
∴△PQF的周长是|PF|+|QF|+|PQ|=28+16=44.
9.解析:(1)如图所示,不妨设M在双曲线的右支上,M点到x轴的距离为h,因为MF1·MF2=0,则MF1⊥MF2,
设|MF1|=m,|MF2|=n,
由双曲线定义,知m-n=2a=8,①
又m2+n2=(2c)2=80,②
由①②得m·n=8,所以eq \f(1,2)mn=4=eq \f(1,2)|F1F2|·h,
所以h=eq \f(2\r(5),5).所以M点到x轴的距离为eq \f(2\r(5),5).
(2)设所求双曲线C的方程为eq \f(x2,16-λ)-eq \f(y2,4+λ)=1(-4
相关试卷
这是一份高中数学人教B版 (2019)选择性必修 第一册2.3.1 圆的标准方程当堂达标检测题,共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学2.5.1 椭圆的标准方程课后测评,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第一册3.2 双曲线复习练习题,共5页。