浙江省宁波市慈溪市部分学校2023-2024学年数学八上期末教学质量检测模拟试题含答案
展开
这是一份浙江省宁波市慈溪市部分学校2023-2024学年数学八上期末教学质量检测模拟试题含答案,共9页。试卷主要包含了估算的值在,要使分式有意义,应满足的条件是,点E等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,已知的大小为,是内部的一个定点,且,点,分别是、上的动点,若周长的最小值等于,则的大小为( )
A.B.C.D.
2.如图是一段台阶的截面示意图,若要沿铺上地毯(每个调节的宽度和高度均不同),已知图中所有拐角均为直角.须知地毯的长度,至少需要测量( )
A.2次B.3次C.4次D.6次
3.下列运算中正确的是( )
A.B.C.D.
4.估算的值在( )
A.4和5之间B.5和6之间C.6和7之间D.7和8之间
5.如图,将直尺与含角的三角尺摆放在一起,若,则的度数是( )
A.B.C.D.
6.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( )
A.SASB.AASC.ASAD.SSS
7.要使分式有意义,应满足的条件是( )
A.B.C.D.
8.如图,在中,,D是AB上的点,过点D作 交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有( )
①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.
A.①②③B.①②④C.②③④D.①②③④
9.我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表:
问该班同学捐款金额的众数和中位数分别是( )
A.13,11B.25,30C.20,25D.25,20
10.点E(m,n)在平面直角坐标系中的位置如图所示,则坐标(m+1,n﹣1)对应的点可能是( )
A.A点B.B点C.C点D.D点
11.如图,,,则等于( )
A.B.C.D.
12.在平面直角坐标系中,点位于哪个象限?( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(每题4分,共24分)
13.我们知道,实数与数轴上的点是一一对应的,任意一个实数在数轴上都能找到与之对应的点,比如我们可以在数轴上找到与数字2对应的点.
(1)在如图所示的数轴上,画出一个你喜欢的无理数,并用点表示;
(2)(1)中所取点表示的数字是______,相反数是_____,绝对值是______,倒数是_____,其到点5的距离是______.
(3)取原点为,表示数字1的点为,将(1)中点向左平移2个单位长度,再取其关于点的对称点,求的长.
14.若为实数,且,则的值为 .
15.命题“如果,则,”的逆命题为____________.
16.如图,,,,若,则的长为______.
17.如图,中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,如果AC=6cm,BC=8cm,那么的周长为_________cm.
18.我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若,则该等腰三角形的顶角为______________度.
三、解答题(共78分)
19.(8分)如图,已知网格上最小的正方形的边长为(长度单位),点在格点上.
(1)直接在平面直角坐标系中作出关于轴对称的图形(点对应点,点对应点);
(2)的面积为 (面积单位)(直接填空);
(3)点到直线的距离为 (长度单位)(直接填空);
20.(8分)八(2)班分成甲、乙两组进行一分钟投篮测试,并规定得6分及以上为合格,得9分及以上为优秀,现两组学生的一次测试成绩统计如下表:
(1)请你根据上表数据,把下面的统计表补充完整,并写出求甲组平均分的过程;
(2)如果从投篮的稳定性角度进行评价,你认为哪组成绩更好?并说明理由;
(3)小聪认为甲组成绩好于乙组,请你说出支持小聪观点的理由;
21.(8分)如图,在锐角三角形ABC中,AB = 13,AC = 15,点D是BC边上一点,BD = 5,AD = 12,求BC的长度.
22.(10分)2019年11月26日,鲁南高铁日曲段正式开通,日照市民的出行更加便捷.从日照市到B市,高铁的行驶路线全程是600千米,普通列车的行驶路线全程是高铁的1.2倍.若高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间节省4小时,求高铁的平均速度.
23.(10分)某条道路限速如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪处的正前方的处,过了后,小汽车到达B处,此时测得小汽车与车速测检测仪间的距离为,这辆小汽车超速了吗?
24.(10分)利用多项式的乘法法则可以推导得出:
=
=
型式子是数学学习中常见的一类多项式,因式分解是与整式乘法方向相反的变形,利用这种关系可得
①
因此,利用①式可以将型式子分解因式.
例如:将式子分解因式,这个式子的二次项系数是1,常数项,一次项系数,因此利用①式可得.
上述分解因式的过程,也可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(图1)
这样,我们也可以得到.
这种方法就是因式分解的方法之一十字相乘法.
(1)利用这种方法,将下列多项式分解因式:
(2)
25.(12分)已知:如图,在△ABC中,AB=2AC,过点C作CD⊥AC,交∠BAC的平分线于点D.求证:AD=BD.
26.(12分)与是两块全等的含的三角板,按如图①所示拼在一起,与重合.
(1)求证:四边形为平行四边形;
(2)取中点,将绕点顺时针方向旋转到如图位置,直线与分别相交于两点,猜想长度的大小关系,并证明你的猜想;
(3)在(2)的条件下,当旋转角为多少度时,四边形为菱形.并说明理由.
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、D
4、D
5、C
6、D
7、D
8、B
9、D
10、C
11、D
12、D
二、填空题(每题4分,共24分)
13、(1)见解析;(2)(答案不唯一);(3)(答案不唯一).
14、1
15、若,则
16、1
17、1
18、
三、解答题(共78分)
19、(1)(图略);(2);(3).
20、(1)6.8,6,7,求甲组平均分的过程见解析;(2)乙组的成绩更好,理由:乙组的方差小于甲组的方差,所以乙组的成绩稳定;(3)从优秀率看,甲组的成绩比乙组的成绩好
21、14
22、高铁的平均速度是300千米/时.
23、小汽车超速了.
24、(1);;(2)
25、见解析.
26、(1)证明见解析;(2)OP=OQ,证明见解析;(3)90°,理由见解析.
捐款(元)
5
10
15
20
25
30
人数
3
6
11
11
13
6
成绩(分)
4
5
6
7
8
9
甲组人数(人)
1
2
5
2
1
4
乙组人数(人)
1
1
4
5
2
2
统计量
平均分
方差
众数
中位数
合格率
优秀率
甲组
2.56
6
80.0%
26.7%
乙组
6.8
1.76
7
86.7%
13.3%
相关试卷
这是一份浙江省宁波市慈溪市阳光实验中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共7页。试卷主要包含了若点 A,下列运算正确的是等内容,欢迎下载使用。
这是一份浙江省宁波市慈溪市部分学校2023-2024学年数学九上期末复习检测试题含答案,共7页。试卷主要包含了下列对于二次根式的计算正确的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份2023-2024学年浙江省宁波市九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。