湖北省武昌区粮道街中学2023-2024学年八年级数学第一学期期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.实数、、、在数轴上的位置如图所示,下列关系式不正确的是( )
A.B.C.D.
2.点在( )
A.第一象限B.第二象限C.第二象限D.第四象限
3.线段CD是由线段AB平移得到的,点A(3,-1)的对应点C的坐标是(-2,5),则点B(0,4)的对应点D的坐标是( ).
A.(5,-7)B.(4,3)C.(-5,10)D.(-3,7)
4.随着电子技术的不断进步,电子元件的尺寸大幅缩小,电脑芯片上某电子元件大约只有,这个数用科学记数法表示为( )
A.B.C.D.
5.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到An.则△OA6A2020的面积是( )
A.505B.504.5C.505.5D.1010
6. “三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,,点,可在槽中滑动,若,则的度数是( )
A.60°B.65°C.75°D.80°
7.将多项式分解因式,结果正确的是 ( )
A.B.
C.D.
8.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为( )
A.22B.22.5C.23D.25
9.如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是( )
A.5B.6C.7D.8
10.估计的值在( )
A.2到3之间B.3到4之间C.4到5之间D.5到6之间
11.下列说法错误的是( )
A.一组对边平行且相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的菱形是正方形
D.对角线相等的平行四边形是矩形
12.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,于点D,则BD的长为
A.3B.C.4D.
二、填空题(每题4分,共24分)
13.如图,中,,,是的角平分线,于点,若,则的面积为__________.
14.若分式的值为0,则y=_______
15.已知点P(﹣10,1)关于y轴对称点Q(a+b,b﹣1),则的值为_____.
16.某同学在解关于的分式方程去分母时,由于常数6漏乘了公分母,最后解得.是该同学去分母后得到的整式方程__________的解,据此可求得__________,原分式方程的解为__________.
17.图中x的值为________
18.当a=3,a-b=-1时,a2-ab的值是
三、解答题(共78分)
19.(8分)已知为等边三角形,点为直线上一动点(点不与点、点重合).连接,以为边向逆时针方向作等边,连接,
(1)如图1,当点在边上时:
①求证:;
②判断之间的数量关系是 ;
(2)如图2,当点在边的延长线上时,其他条件不变,判断之间存在的数量关系,并写出证明过程;
(3)如图3,当点在边的反向延长线上时,其他条件不变,请直接写出之间存在的数量关系为 .
20.(8分)已知:如图,在△ABC中,AB=2AC,过点C作CD⊥AC,交∠BAC的平分线于点D.求证:AD=BD.
21.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)求出表格中,,的值;
(2)分别运用上表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
22.(10分)如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.
23.(10分)某商厦用8万元购进纪念运动休闲衫,面市后供不应求,商厦又用1.6万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元,商厦销售这种运动休闲衫时每件定价都是100元,最后剩下的150件按八折销售,很快售完.
(1)商厦第一批和第二批各购进休闲衫多少件?
(2)请问在这两笔生意中,商厦共盈利多少元?
24.(10分)已知:如图,点是正比例函数与反比例函数的图象在第一象限的交点,轴,垂足为点,的面积是2.
(1)求的值以及这两个函数的解析式;
(2)若点在轴上,且是以为腰的等腰三角形,求点的坐标.
25.(12分)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?
(2)两人到达绿道后约定先跑 6 千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.
①当m=12,n=5时,求李强跑了多少分钟?
②张明的跑步速度为 米/分(直接用含m,n的式子表示).
26.(12分)如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.
⑴若∠AFD=155°,求∠EDF的度数;
⑵若点F是AC的中点,求证:∠CFD=∠B.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、C
4、D
5、A
6、D
7、D
8、B
9、D
10、B
11、B
12、A
二、填空题(每题4分,共24分)
13、1
14、-1
15、3
16、x-3+6=m ; 2;
17、1
18、-1
三、解答题(共78分)
19、(1)①见解析;②AC=CE+CD;(2)CE=AC+CD,证明见解析;(3)CD=CE+AC.
20、见解析.
21、(1)a=7,b=7.5,c=1.2;(2)选甲,理由见解析
22、90°;65°
23、(1)第一批购进衬衫1000件,第二批购进了2000件;(2)在这两笔生意中,商厦共盈利41000元.
24、(1),反比例函数的解析式为,正比例函数的解析式为.(2)点的坐标为,,.
25、(1)李强的速度为80米/分,张明的速度为1米/分.(2)
26、(1)50°;(2)见解析
平均成绩/环
中位数/环
众数/环
方差
甲
8
乙
7
7
7
湖北省武汉市武昌区粮道街中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案: 这是一份湖北省武汉市武昌区粮道街中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案,共7页。试卷主要包含了函数与抛物线的图象可能是,在中,,,则,下列事件中,属于随机事件的是等内容,欢迎下载使用。
湖北省武昌区粮道街中学2023-2024学年九上数学期末调研试题含答案: 这是一份湖北省武昌区粮道街中学2023-2024学年九上数学期末调研试题含答案,共8页。
2023-2024学年湖北省武昌区粮道街中学九上数学期末统考试题含答案: 这是一份2023-2024学年湖北省武昌区粮道街中学九上数学期末统考试题含答案,共8页。试卷主要包含了下列说法正确的是,如图,一个半径为r等内容,欢迎下载使用。