浙江省宁波市名校2023-2024学年数学八上期末学业水平测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )
A.众数是5B.中位数是5C.平均数是6D.方差是3.6
2.下列图形中,对称轴的条数最多的图形是( )
A.B.C.D.
3.下列图形中,是轴对称图形的是( )
A.B.C.D.
4.平面直角坐标系中,点(2,﹣1)关于y轴的对称点为(a,b),则ab的值为( )
A.1B.C.﹣2D.﹣
5.下列各组线段中,能够组成直角三角形的一组是( )
A.1,2,3B.2,3,4C.4,5,6D.1,,
6.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )
A.2018B.2019C.2020D.2021
7.下列各多项式中,能运用公式法分解因式的有()
①②③④⑤⑥⑦
A.4个B.5个C.6个D.7个
8.下列计算结果为的是( )
A.B.C.D.
9.等于( )
A.2B.-2C.1D.0
10.若,且,则的值可能是( )
A.0B.3C.4D.5
11.下列长度的三条线段能组成直角三角形的是
A.3, 4,5B.2,3,4C.4,6,7D.5,11,12
12.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是( )
A.点AB.点BC.点CD.点D
二、填空题(每题4分,共24分)
13.分式方程的解为_________.
14.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为_______.
15.在平面直角坐标系xOy中,O为坐标原点, A是反比例函数图象上的一点,AB垂直y轴,垂足为点B,那么的面积为___________.
16.如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为_____.
17.一次数学活动课上,老师利用“在面积一定的矩形中,正方形的周长最短”这一结论,推导出“式子的最小值为”.其推导方法如下:在面积是的矩形中,设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是,模仿老师的推导,可求得式子的最小值是________.
18.先化简,再求值:,其.
三、解答题(共78分)
19.(8分) (1)如图①,已知线段,以为一边作等边 (尺规作图,保留作图痕迹,不写作法);
(2)如图②,已知,,,分别以为边作等边和等边,连接,求的最大值;
(3)如图③,已知,,,,为内部一点,连接,求出的最小值.
20.(8分)观察下列各式:
请你根据上面三个等式提供的信息,猜想:
(1)_____________
(2)请你按照上面每个等式反映的规律,写出用(为正整数)表示的等式:______________;
(3)利用上述规律计算:(仿照上式写出过程)
21.(8分)某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.
(1)求第一次每个书包的进价是多少元?
(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?
22.(10分)已知:如图,△ABC中,P、Q两点分别是边AB和AC的垂直平分线与BC的交点,连结AP和AQ,且BP=PQ=QC.求∠C的度数.
证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,
∴PA= ,QC=QA.
∵BP=PQ=QC,
∴在△APQ中,PQ= (等量代换)
∴△APQ是 三角形.
∴∠AQP=60°,
∵在△AQC中,QC=QA,
∴∠C=∠ .
又∵∠AQP是△AQC的外角,
∴∠AQP=∠ +∠ =60°.(三角形的一个外角等于与它不相邻的两个内角的和)
∴∠C= .
23.(10分)已知:如图,比长,的垂直平分线交于点,交于点,的周长是,求和的长.
24.(10分)定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{1,5,5}=1.
(1)根据题意填空:min= ;
(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;
(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.
25.(12分)(1)问题解决:如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.
①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是 ;
②在图2中,求证:AD=CD;
(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证BD+AD=BC.
26.(12分)如图,已知△ABC的顶点分别为A(-2,2)、B(-4,5)、C(-5,1)和直线m(直线m上各点的横坐标都为1).
(1)作出△ABC关于x轴对称的图形,并写出点的坐标;
(2)作出点C关于直线m对称的点,并写出点的坐标;
(3)在x轴上画出点P,使PA+PC最小.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、B
4、D
5、D
6、D
7、B
8、C
9、C
10、A
11、A
12、B
二、填空题(每题4分,共24分)
13、
14、
15、1
16、1
17、
18、,
三、解答题(共78分)
19、(1)见解析;(2)5;(3)
20、(1);(2);(3),过程见解析
21、(1)第一次每个书包的进价是50元
(2)最低可打8折.
22、BP,垂直平分线上任意一点,到线段两端点的距离相等,PA=QA,等边,QAC,C,QAC,30°.
23、AB=8cm ,AC=6cm
24、(1)3(2)见解析(3)m≤2
25、(1)①角平分线上的点到角的两边距离相等;②见解析;(2)见解析.
26、 (1)图见解析,A(-2,-2);(2)图见解析,C2(7,1);(3)图见解析
2023-2024学年浙江省宁波市鄞州区数学九上期末学业水平测试试题含答案: 这是一份2023-2024学年浙江省宁波市鄞州区数学九上期末学业水平测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年浙江省宁波市慈溪市数学九上期末学业水平测试模拟试题含答案: 这是一份2023-2024学年浙江省宁波市慈溪市数学九上期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。
浙江省宁波市名校2023-2024学年数学八上期末检测模拟试题含答案: 这是一份浙江省宁波市名校2023-2024学年数学八上期末检测模拟试题含答案,共7页。试卷主要包含了不等式组的最小整数解是,下列各式中是分式的是等内容,欢迎下载使用。