终身会员
搜索
    上传资料 赚现金
    专题2.4 极值计算先判断,单调原则不能撼(原卷及解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题2.4 极值计算先判断,单调原则不能撼(原卷版).doc
    • 解析
      专题2.4 极值计算先判断,单调原则不能撼(解析版).doc
    专题2.4 极值计算先判断,单调原则不能撼(原卷及解析版)01
    专题2.4 极值计算先判断,单调原则不能撼(原卷及解析版)01
    专题2.4 极值计算先判断,单调原则不能撼(原卷及解析版)02
    专题2.4 极值计算先判断,单调原则不能撼(原卷及解析版)03
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题2.4 极值计算先判断,单调原则不能撼(原卷及解析版)

    展开
    这是一份专题2.4 极值计算先判断,单调原则不能撼(原卷及解析版),文件包含专题24极值计算先判断单调原则不能撼原卷版doc、专题24极值计算先判断单调原则不能撼解析版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。

    函数极值问题的常见类型及解题策略
    (1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
    (2)求函数极值的方法:
    ①确定函数的定义域.
    ②求导函数.
    ③求方程的根.
    ④检查在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得极小值;如果在这个根的左、右两侧符号不变,则在这个根处没有极值.[来源:Z#xx#k.Cm]
    (3)利用极值求参数的取值范围:确定函数的定义域,求导数,求方程的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围.
    【典例指引】
    例1.已知函数其中
    ⑴当时,求曲线处的切线的斜率;
    ⑵当时,求函数的单调区间与极值.
    例2.已知函数的图象在处的切线过点,.
    (1)若,求函数的极值点;
    (2)设是函数的两个极值点,若,证明:.(提示)
    例3.已知函数在处有极值10.
    (1)求实数的值;
    (2)设,讨论函数在区间上的单调性.
    【同步训练】
    1.设, .
    (1)令,求的单调区间;
    (2)已知在处取得极大值,求实数的取值范围.
    2.已知函数,在定义域内有两个不同的极值点
    (I)求的取值范围;
    (II)求证:
    3.已知函数.
    (Ⅰ)若函数在时有极值0,求常数a,b的值;
    (Ⅱ)若函数在点处的切线平行于x轴,求实数b的值.
    4.已知函数, .
    (1)求函数在上的最值;
    (2)求函数的极值点.
    5.设函数f(x)=lnx+ax2+x+1.
    (I)a=﹣2时,求函数f(x)的极值点;
    (Ⅱ)当a=0时,证明xex≥f(x)在(0,+∞)上恒成立.
    6.已知函数,,(其中,为自然对数的底数,……).
    (1)令,求的单调区间;
    (2)已知在处取得极小值,求实数的取值范围.
    7.已知函数().
    (1)若在其定义域内单调递增,求实数的取值范围;
    (2)若,且有两个极值点,(),求的取值范围.
    8.已知函数.
    (1)若函数在和处取得极值,求的值;
    (2)在(1)的条件下,当时, 恒成立,求的取值范围.
    9.已知函数,其中为常数.
    (1)当,且时,判断函数是否存在极值,若存在,求出极值点;若不存在,说明理由;
    (2)若,对任意的正整数,当时,求证:.
    10.已知函数.
    (1)求函数的极值点;
    (2)若f(x)≥x2+1在(0,2)上恒成立,求实数t的取值范围.
    相关试卷

    专题16 极值点偏移问题(原卷及解析版): 这是一份专题16 极值点偏移问题(原卷及解析版),文件包含专题16极值点偏移问题原卷版docx、专题16极值点偏移问题解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。

    高考数学压轴难题归纳总结培优专题2.4 极值计算先判断 单调原则不能撼 (含解析): 这是一份高考数学压轴难题归纳总结培优专题2.4 极值计算先判断 单调原则不能撼 (含解析),共17页。

    高中数学高考专题16 构造函数用函数单调性判断函数值的大小(原卷版): 这是一份高中数学高考专题16 构造函数用函数单调性判断函数值的大小(原卷版),共8页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map