人教A版 (2019)选择性必修 第二册第四章 数列本章综合与测试优秀精练
展开1.(2023秋·福建宁德·高二福鼎市第一中学校考阶段练习)数列的一个通项公式为( )
A.B.
C.D.
2.(2023秋·广东惠州·高三校考阶段练习)设为等比数列的前项和,且,则( )
A.B.C.或D.或
3.(2023·四川雅安·校考模拟预测)若数列的前项和为,且,则( )
A.684B.682C.342D.341
4.(2023秋·四川雅安·高三校考阶段练习)已知数列的前n项和,正项等比数列满足,,则使成立的n的最大值为( )
A.5B.6C.7D.8
5.(2023秋·北京密云·高三北京市密云区第二中学校考阶段练习)我们可以用下面的方法在线段上构造出一个特殊的点集:如图,取一条长度为1的线段,第1次操作,将该线段三等分,去掉中间一段,留下两段;第2次操作,将留下的两段分别三等分,各去掉中间一段,留下四段;按照这种规律一直操作下去.若经过次这样的操作后,去掉的所有线段的长度总和不小于,则的最小值为( )(参考数据:,)
A.B.C.D.
6.(2023秋·黑龙江·高三黑龙江实验中学校考阶段练习)等差数列的前n项和为则的最大值为( )
A.60B.45C.30D.15
7.(2023秋·福建龙岩·高二福建省连城县第一中学校考阶段练习)设数列中,,(且),则( )
A.-1B.C.2D.
8.(2023·全国·高三专题练习)在数列中,,,且.表示不超过的最大整数,若,数列的前项和为,则( )
A.2B.3C.2022D.2023
二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)
9.(2023秋·甘肃·高二校考阶段练习)数列的前n项和为,已知,则( )
A.是递增数列
B.
C.当时,
D.当或4时,取得最大值
10.(2023秋·安徽蚌埠·高二统考期末)设等差数列的前项和为,且满足,,则下列说法正确的是( )
A.最大B.
C.D.
11.(2023·全国·高二专题练习)已知数列满足:(),且数列是递增数列,则实数a的可能取值是( )
A.2B.C.D.3
12.(2023秋·福建·高三福建师大附中校考阶段练习)如图所示,将平面直角坐标系中的格点(横4纵坐标均为整数的点)的横、纵坐标之和作为标签,例如:原点处标签为0,记为;点处标签为1,记为;点处标签为2,记为;点处标签为1,记为;点处标签为0,记为;…以此类推,格点处标签为,记则( )
A.B.C.D.
三、填空题:(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)
13.(2023秋·上海闵行·高二校考阶段练习)已知数列中,,,则 .
14.(2023秋·辽宁大连·高三大连市第二十高级中学校考开学考试)记为等比数列的前n项和,已知,,则 .
15.(2023秋·甘肃定西·高二甘肃省临洮中学校考阶段练习)在数列中,,,若对于任意的,恒成立,则实数的最小值为 .
16.(2023春·广东佛山·高二校联考阶段练习)设数列的前项和为,且,已知关于的方程有唯一的解,则 ;若不等式对任意的恒成立,则的最大值是 .
四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)
17.(2023秋·云南昆明·高三云南民族大学附属中学校考阶段练习)已知等差数列的前项和为,且成等比数列.
(1)求数列的通项公式;
(2)解方程.
18.(2023秋·山东·高三山东省实验中学校考阶段练习)已知数列的前n项和为,且.
(1)求的通项公式;
(2)若数列满足,求数列的前2n项和.
19.(2023秋·广东广州·高三广州市第九十七中学校考阶段练习)设数列的各项都为正数,且.
(1)证明数列为等差数列;
(2)设,求数列的前项和.
20.(2023秋·江苏宿迁·高三校考阶段练习)已知数列的前项和为,且,.
(1)求数列的通项公式;
(2)设,数列前项和为,求证:.
21.(2023秋·上海徐汇·高三上海市南洋模范中学校考阶段练习)已知数列满足:,.
(1)求证是等比数列,并求数列的通项公式;
(2)求使不等式成立的所有正整数m,n的值.
22.(2023秋·上海虹口·高二上外附中校考阶段练习)已知数列的前n项和为,且对任意正整数n都有.
(1)求数列的通项公式;
(2)若(n为正整数),求数列的前n项和;
(3)若(n为正整数),且不等式对任意正整数n都成立,求实数t的取值范围.
人教A版 (2019)选择性必修 第二册第五章 一元函数的导数及其应用本章综合与测试优秀课时作业: 这是一份人教A版 (2019)选择性必修 第二册第五章 一元函数的导数及其应用本章综合与测试优秀课时作业,文件包含第10讲第五章一元函数的导数及其应用章节验收测评卷综合卷原卷版docx、第10讲第五章一元函数的导数及其应用章节验收测评卷综合卷解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第二册第五章 一元函数的导数及其应用本章综合与测试优秀综合训练题: 这是一份高中数学人教A版 (2019)选择性必修 第二册第五章 一元函数的导数及其应用本章综合与测试优秀综合训练题,文件包含第07讲拓展二数列求和原卷版docx、第07讲拓展二数列求和解析版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
人教A版 (2019)选择性必修 第二册第五章 一元函数的导数及其应用本章综合与测试优秀当堂检测题: 这是一份人教A版 (2019)选择性必修 第二册第五章 一元函数的导数及其应用本章综合与测试优秀当堂检测题,文件包含第06讲拓展一数列求通项原卷版docx、第06讲拓展一数列求通项解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。