开学活动
搜索
    上传资料 赚现金

    2023-2024学年吉林省重点学校八年级(上)期末数学试卷(五四学制)(含解析)

    2023-2024学年吉林省重点学校八年级(上)期末数学试卷(五四学制)(含解析)第1页
    2023-2024学年吉林省重点学校八年级(上)期末数学试卷(五四学制)(含解析)第2页
    2023-2024学年吉林省重点学校八年级(上)期末数学试卷(五四学制)(含解析)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年吉林省重点学校八年级(上)期末数学试卷(五四学制)(含解析)

    展开

    这是一份2023-2024学年吉林省重点学校八年级(上)期末数学试卷(五四学制)(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.下列各点中,在第一象限内的点是( )
    A. (3,2)B. (−3,2)C. (3,−2)D. (−3,−2)
    2.下列关于x的方程中,一定是一元二次方程的为( )
    A. x2+2xy+y2=0B. x2−2x+3=0
    C. x2−1x=0D. ax2+bx+c=0
    3.要使 x−1在实数范围内有意义,则x的取值范围是( )
    A. x≤1B. x>1C. x≥0D. x≥1
    4.下列函数中,函数值y随x的增大而减小的是( )
    A. y=6xB. y=−6xC. y=6xD. y=−6x
    5.将直线y=4x−1向上平移2个单位长度,可得直线的解析式为( )
    A. y=4x−3B. y=4x−1C. y=4x+1D. y=4x+3
    6.矩形、菱形、正方形都具有的性质是( )
    A. 对角线相等B. 对角线互相平分
    C. 对角线互相垂直D. 对角线互相平分且相等
    7.如图,▱ABCD的对角线AC、BD交于点O,▱ABCD的周长为30,直线EF过点O,且与AD,BC分别交于点E.F,若OE=5,则四边形ABFE的周长是( )
    A. 30B. 25C. 20D. 15
    8.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE⊥BC于点E,连接OE,若OA=3,S菱形ABCD=9,则OE的长为( )
    A. 5
    B. 2
    C. 32
    D. 52
    二、填空题:本题共6小题,每小题3分,共18分。
    9.化简: 12= ______ .
    10.将一元二次方程2x2=5x−3化成一般形式之后,若二次项的系数是2,则一次项系数为______ .
    11.若关于x的一元二次方程x2+x+c=0有两个相等的实数根,则c= ______ .
    12.在平面直角坐标系中,一次函数y=3x−1与y=ax(a≠0)的图象的交点坐标是(1,2),则方程组3x−y=1ax−y=0的解是______ .
    13.如图,在▱ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE=10,则▱ABCD的面积为______ .
    14.如图,矩形ABCD的边AB与y轴平行,顶点A和C的坐标分别为(m,3)和(m+2,9),反比例函数y=kx(x>0)的图象同时经过点B与点D,则k的值为______ .
    三、解答题:本题共9小题,共78分。解答应写出文字说明,证明过程或演算步骤。
    15.(本小题10分)
    计算:
    (1)2 18−3 2− 12;
    (2)( 3−1)2−( 2+ 3)( 3− 2).
    16.(本小题10分)
    用适当的方法解下列方程:
    (1)3x2−4x=2x;
    (2)x(x+8)=16.
    17.(本小题6分)
    如图,在△ABC中,BE平分∠ABC,DE/​/BC,∠EFC=2∠ABE.
    求证:四边形DBFE是菱形.
    18.(本小题7分)
    已知:如图,CE、CF分别是△ABC的内外角平分线,过点A作CE、CF的垂线,垂足分别为E、F.
    (1)求证:四边形AECF是矩形;
    (2)当△ABC满足什么条件时,四边形AECF是正方形?
    19.(本小题7分)
    图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,小正方形的顶点称为格点,点A、B均在格点上,只用无刻度的直尺在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写画法(所画图形不全等).

    (1)在图①中,以线段AB为边画平行四边形ABCD.
    (2)在图②中,以线段AB为边画菱形ABEF.
    (3)在图③中,以线段AB为边画正方形ABGH.
    20.(本小题8分)
    如图,平面直角坐标系中,过点C(0,12)的直线AC与直线OA相交于点A(8,4).
    (1)求直线AC的表达式;
    (2)动点M在射线AC上运动,是否存在点M,使△OMC的面积是△OAC的面积的12?若存在,求出此时点M的坐标;若不存在,请说明理由.
    21.(本小题8分)
    甲、乙两个工程组同时挖据沈白高铁某段隧道,两组每天挖据长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和y(m)与甲组挖据时间x(天)之间的关系如图所示.
    (1)甲组比乙组多挖掘了______ 天.
    (2)求乙组停工后y关于x的函数解析式,并写出自变量x的取值范围.
    (3)当甲组挖据的总长度与乙组挖掘的总长度相等时,直接写出乙组已停工的天数.
    22.(本小题10分)
    【问题原型】华师版教材八年级下册第121页有这样一道题:
    如图1,在正方形ABCD中,CE⊥DF.求证:CE=DF.
    请你完成这一问题的证明过程.
    【问题应用】如图,在正方形ABCD中,AB=4,E、F分别是边AB、BC上的点,且AE=BF.
    (1)如图2,连接CE、DF交于点G,H为GE的中点,连接DH,FH.当E为AB的中点时,四边形CDHF的面积为______ ;
    (2)如图3,连接DE、DF,当点E在边AB上运动时,DE+DF的最小值为______ .
    23.(本小题12分)
    如图①,在矩形ABCD中,AB=4,AD=6,点E在边BC上,且BE=2,动点P从点E出发,沿折线EB−BA−AD以每秒1个单位长度的速度运动.作∠PEQ=90°,EQ交边AD或边DC于点Q,连接PQ.当点Q与点C重合时,点P停止运动.设点P的运动时间为t秒.(t>0)
    (1)当点P和点B重合时,线段PQ的长为______ ;
    (2)当点Q和点D重合时,求PEQE的值;
    (3)当点P在边AD上运动时,如图②,求证:PEQE为定值,并求这个值;
    (4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD的重叠部分为轴对称四边形时,直接写出t的取值范围.
    答案和解析
    1.【答案】A
    【解析】解:A、(3,2)是第一象限内的点,符合题意;
    B、(−3,2)是第二象限内的点,不符合题意;
    C、(3,−2)是第四象限内的点,不符合题意;
    D、(−3,−2)是第三象限内的点,不符合题意;
    故选:A.
    根据各象限内点的坐标的符号特征解答即可.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
    2.【答案】B
    【解析】解:A、方程x2+2xy+y2=0含有2个未知数,不是一元二次方程,故本选项不符合题意;
    B、方程x2−2x+3=0是一元二次方程,故本选项符合题意;
    C、方程x2−1x=0的分母含未知数,不是一元二次方程,故本选项不符合题意;
    D、当a=0时,方程ax2+bx+c=0不是一元二次方程,故本选项不符合题意;
    故选:B.
    根据一元二次方程的定义:只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,进行判断即可.
    本题考查了一元二次方程的定义,解题的关键是熟练的掌握一元二次方程的定义
    3.【答案】D
    【解析】解:∵ x−1在实数范围内有意义,
    ∴x−1≥0,
    ∴x≥1.
    故选:D.
    根据二次根式中的被开方数是非负数,列出不等式,解之即可得出答案.
    此题主要考查了二次根式有意义的条件,正确得出被开方数的取值范围是解题关键.
    4.【答案】B
    【解析】解:A选项,y=6x的函数值随着x增大而增大,
    故A不符合题意;
    B选项,y=−6x的函数值随着x增大而减小,
    故B符合题意;
    C选项,在每一个象限内,y=6x的函数值随着x增大而减小,
    故C不符合题意;
    D选项,在每一个象限内,y=−6x的函数值随着x增大而增大,
    故D不符合题意,
    故选:B.
    根据反比例函数的性质和正比例函数的性质分别判断即可.
    本题考查了反比例函数的性质,正比例函数的性质,熟练掌握这些性质是解题的关键.
    5.【答案】C
    【解析】解:将直线y=4x−1向上平移2个单位长度,可得直线的解析式为:y=4x−1+2,即y=4x+1.
    故选:C.
    根据图象上加下减,左加右减的规律即可求解.
    本题考查一次函数图象与几何变换,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.
    6.【答案】B
    【解析】解:A、对角线相等,菱形不具有此性质,故本选项不符合题意;
    B、对角线互相平分是平行四边形具有的性质,正方形、菱形、矩形都具有此性质,故本选项符合题意;
    C、对角线互相垂直,矩形不具有此性质,故本选项不符合题意;
    D、对角线互相平分且相等,菱形不具有对角线相等的性质,故本选项不符合题意;
    故选:B.
    根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.
    本题考查正方形的性质、菱形的性质、矩形的性质,解答本题的关键是明确矩形、菱形、正方形都是平行四边形.
    7.【答案】B
    【解析】解:∵四边形ABCD是平行四边形,对角线AC、BD交于点O,
    ∴AB=CD,AD=CB,AD/​/CB,OA=OC,
    ∴∠OAE=∠OCF,
    在△AOE和△COF中,
    ∠AOE=∠COFOA=OC∠OAE=∠OCF,
    ∴△AOE≌△COF(ASA),
    ∴OE=OF=5,AE=CF,
    ∴EF=OE+OF=5+5=10,AE+BF=CF+BF=CB,
    ∵▱ABCD的周长为30,
    ∴2AB+2CB=30,
    ∴AB+CB=15,
    ∴AB+AE+BF+EF=AB+CB+EF=15+10=25,
    ∴四边形ABFE的周长是25,
    故选:B.
    由平行四边形的性质得AB=CD,AD=CB,AD/​/CB,OA=OC,所以∠OAE=∠OCF,而∠AOE=∠COF,即可证明△AOE≌△COF,得OE=OF=5,AE=CF,则EF=10,AE+BF=CF+BF=CB,由2AB+2CB=30,得AB+CB=15,则AB+AE+BF+EF=AB+CB+EF=25,于是得到问题的答案.
    此题重点考查平行四边形的性质、全等三角形的判定与性质等知识,证明△AOE≌△COF是解题的关键.
    8.【答案】C
    【解析】解:∵四边形ABCD是菱形,
    ∴OA=OC=3,OB=OD=12BD,BD⊥AC,
    ∴AC=6,
    ∵S菱形ABCD=12AC×BD=9,
    ∴BD=3,
    ∵DE⊥BC,
    ∴∠BED=90°,
    ∴OE=12BD=32.
    故选:C.
    由菱形的性质得出AC=6,由菱形的面积得出BD=3,再由直角三角形斜边上的中线性质即可得出结果.
    此题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.
    9.【答案】2 3
    【解析】解: 12= 4× 3=2 3,
    故答案为:2 3.
    根据二次根式的乘法法则进行计算即可.
    本题考查二次根式的化简,此为基础且重要知识点,必须熟练掌握.
    10.【答案】−5
    【解析】解:∵一元二次方程2x2=5x−3化成一般形式之后,二次项的系数是2,
    ∴化成的一般形式为2x2−5x+3=0,
    ∴一次项系数为−5.
    故答案为:−5.
    根据题意正确得出一元二次方程的一般形式,进而可得到答案.
    本题考查了一元二次方程的一般形式,熟知一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式是解题的关键.
    11.【答案】14
    【解析】解:∵关于x的一元二次方程x2+x+c=0有两个相等的实数根,
    ∴Δ=0,即12−4c=0,
    解得:c=14.
    故答案为:14.
    由题意Δ=0,即可得出关于c的一元一次方程,解之即可得出结论.
    本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:
    ①当Δ>0时,方程有两个不相等的实数根;
    ②当Δ=0时,方程有两个相等的实数根;
    ③当Δ

    相关试卷

    吉林省长春市重点学校2023-2024学年八年级上学期期末数学试卷(含解析):

    这是一份吉林省长春市重点学校2023-2024学年八年级上学期期末数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年吉林省长春市重点学校八年级(上)期末数学试卷(含解析):

    这是一份2023-2024学年吉林省长春市重点学校八年级(上)期末数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年上海市崇明区八年级(上)期末数学试卷(五四学制)(含解析):

    这是一份2023-2024学年上海市崇明区八年级(上)期末数学试卷(五四学制)(含解析),共15页。试卷主要包含了选择题,四象限内B. 第一,计算题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map