还剩4页未读,
继续阅读
所属成套资源:人教版数学五年级下册教案设计全册
成套系列资料,整套一键下载
人教版五年级下册质数和合数教案设计
展开
这是一份人教版五年级下册质数和合数教案设计,共7页。教案主要包含了教学目标,教学重点,教学难点,教学方法,课前准备,课时安排,教学过程,设计意图等内容,欢迎下载使用。
1. 知识与技能
(1)理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数;
(2)能正确判断一个数是质数还是合数。
(3)能判断两个自然上的和是奇数还是偶数。
2.过程与方法
引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义;
3.情感态度与价值观
培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
【教学重点】
理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。
【教学难点】
能运用一定的方法,从不同的角度判断、感悟质数合数。
【教学方法】
启发式教学、自主探索、合作交流、讨论法、讲解法。
【课前准备】
多媒体课件
【课时安排】
1课时
【教学过程】
(一)激趣导入。
一、创设情境,引入新课(课件第2张)
1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。
2.抢答:请同学们以最快的速度说出下面的数有几个因数。
师出示数,学生抢答因数的个数。
3.思考:(1)一个数的最小因数是几?最大因数是几? (课件第3张)
(2)一个数的因数是有限的还是无限的?
(3)怎样找一个数的因数?
生1:一个数是最小因数是1,最大因数是它本身。
生2:一个数因数的个数是有限的。
生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。
【设计意图】
用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。
4.师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。
(板书课题)
.
(二)探究新知
1. 找出1—20各数的因数,看看它们的因数的个数有什么规律。
(1)学生小组内交流,写出1——20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)
1的因数有:1 11的因数有:1,11
2的因数有:1,2 12的因数有:1,2,3,4,6,12
3的因数有:1,3 13的因数有:1,13
4的因数有:1,2,4 14的因数有:1,2,7,14
5的因数有:1,5 15的因数有:1,3,5,15
6的因数有:1,2,3,6 16的因数有:1,2,4,8,16
7的因数有:1,7 17的因数有:1,17
8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18
9的因数有:1,3,9 19的因数有:1,19
10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20
(2)师:观察它们因数的个数,你发现了什么?
小组讨论:根据因数的个数,你觉得可以怎样分类?
(3)(课件第6张)
生1:有的数只有两个因数,如5的因数是1和5。1只有一个因数1。
生2:有的数的因数不止两个……我们来分分类吧!
2.学习质数与合数(出示课件第7张)
师:一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。如2、3、5、7都是质数。
一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。
1既不是质数,也不是合数。
3.做质数表。(课件第8张)
(1)找出100以内的质数,做一个质数表。
(2)学生讨论:怎样找100以内的质数?说说你的方法。
(课件第10张)
生1:可以把每个数都验证一下,看哪些数是质数。
生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。3的倍数也可以……
划到几的倍数就可以了?
生3:划到7的倍数就可以了.
(3)(课件第11张演示)剩下的数都是质数。
(4)师出示100以内的质数表(课件第12张)
4.牛刀小试。(课件第13张)
(1)将下面的各数分别填入指定的圈内。
2 27 37 11 58 61 73 83 95
(2)两个质数,和是10,积是21,这两个质数是多少?
生:21=3×7,3和7都是质数,而且3+7=10,所以这两个质数就是3和7。
两个质数,和是7,积是10,这两个质数是多少?
10=2×5,2和5都是质数,而且2+5=7,所以这两个质数就是2和5。
5.探索两数之和的奇偶性。(课件第15张)
师:奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?
(1)师:从题目中你知道了什么?
生1:题目让我们对奇数、偶数的和做一些探索。
生2:我把问题表示成这样……
(2)小组讨论:你怎样判断任意两个整数的和是奇数还是偶数?
(3)汇报交流:
生1:我随便找几个奇数、偶数,加起来看一看。(课件第17张)
奇数:5, 7, 9, 11,…
偶数:8,12,20,24,…
5+7=12
7+9=16
……
奇数+奇数=偶数
5+8=13
7+12=19
……
奇数+偶数=奇数
8+12=20
12+20=32
……
偶数+偶数=偶数
(课件第18张)生2: 奇数除以2余1
偶数除以2余0
奇数加偶数的和除以2还余1,所以,奇数+偶数=奇数。
奇数加奇数的和除以2余0,所以,奇数+奇数=偶数。
偶数加偶数的和除以2还余0,所以,偶数+偶数=偶数。
(4)师:同桌讨论:这个结论正确吗?你还有其他的方法吗?试一试。
同桌找一些大数,验证一下所得的结论是否正确。
(5)(课件第20张)汇报交流:
534+319=853
所以:偶数+奇数=奇数
681+249=930
所以:奇数+奇数=偶数
564+232=796
所以:偶数+偶数=偶数
【设计意图】
用归纳的方法得出结论,培养学生的能力。
6.火眼金睛辨对错。(课件第21张)
(1)所有的奇数都是质数。 (×)
(2)所有的偶数都是合数。 (×)
(3)在1,2,3,4,5中,除了质数以外都是合数。( ×)
(4)两个质数的和是偶数。(×)
(5)两个奇数的和是偶数。 (√)
7.小结:刚才的学习你学会了什么?(课件第22张)
(1)质数与合数的概念。
一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,除了1和它本身还有别的因数,这样的数叫做合数。
(2)1既不是质数,也不是合数。
(3)自然数可以分为质数、合数和1。
(4)偶数+奇数=奇数
奇数+奇数=偶数
偶数+偶数=偶数
(三)课堂练习
谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?
1.写出下面各数的因数。(课件第23张)
(1)在50以内的自然数中,最大的质数是( 47),最小的合数是(4)。
(2)既是质数又是奇数的最小一位数是(3)。
(3)如果两个质数的和是24,可以是(5)+( 19),(7)+(17)或(11)+(23) 。
(4)在自然数中,最小的奇数是(1),最小的偶数是(0 ),最小的质数是(2),最小的合数是(4)。
2. 不计算,判断下面算式的结果是奇数还是偶数。 (课件第24张)
1+2+3+4+…+40
生:1—40的自然数中,奇数和偶数各有20个,因为奇数+奇数=偶数,20个奇数相加和是偶数,偶数+偶数=偶数,20个偶数相加和是偶数,所以最后结果一定是偶数。
(四)拓展提高
算一算:3个不同质数的和是最小合数的平方,这3个质数的积是多少?
最小的合数是4,4²=16。
哪3个质数的和是16呢?
2+3+11=16
2×3×11=66
答:这3个质数的积是66。
(五)课堂总结
师:通过学习,你有什么收获?
生交流: 1.一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。
2.一个数,除了1和它本身还有别的因数,这样的数叫做合数。
3.1既不是质数也不是合数。
4.奇数+奇数=偶数 奇数+偶数=奇数 偶数+偶数=偶数
(六)板书设计
质数和合数
一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,除了1和它本身还有别的因数,这样的数叫做合数。
1既不是质数也不是合数。
【教学反思】
在教学质数和合数这一课时,我运用了自主、合作、探究的教学方法,使学生在参与中产生求知欲望,调动学习积极性。首先用猜谜语的形式引入课题,在学生复习因数和倍数的知识的基础上,让学生独立写出1-20这20个数的因数,再根据因数多少进行分类,然后以小组为单位交流,学生通过交流,知道可以分为几种情况,从而引出质数、合数的概念。?在教学中教师努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验。
课堂上学生是“主角”,教师只是一个“配角”,最大限度地把时间和空间都留给学生,使每个学生都参仔细观察,认真思考,充分激发学生思维的主动性和积极性。在课堂中,要求学生观察1——20的因数的个数,自己按照一定的标准进行分类,分完后先小组内交流。说说你是按什么来分的?分成了哪几类?由于采用分的标准也必定不同,然后在让学生说标准的过程中,感悟到质数和合数的各自特征,一点点的提炼归纳出质数和合数的意义。培养学生的分类、观察、分析、归纳和交流的数学能力,建立正确的分类思想。整个过程都是学生在动手操作、交流讨论、归纳概括,而教师只是在关键之处适当点拔,引导学生质疑、释疑、归纳、
1. 知识与技能
(1)理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数;
(2)能正确判断一个数是质数还是合数。
(3)能判断两个自然上的和是奇数还是偶数。
2.过程与方法
引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义;
3.情感态度与价值观
培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
【教学重点】
理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。
【教学难点】
能运用一定的方法,从不同的角度判断、感悟质数合数。
【教学方法】
启发式教学、自主探索、合作交流、讨论法、讲解法。
【课前准备】
多媒体课件
【课时安排】
1课时
【教学过程】
(一)激趣导入。
一、创设情境,引入新课(课件第2张)
1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。
2.抢答:请同学们以最快的速度说出下面的数有几个因数。
师出示数,学生抢答因数的个数。
3.思考:(1)一个数的最小因数是几?最大因数是几? (课件第3张)
(2)一个数的因数是有限的还是无限的?
(3)怎样找一个数的因数?
生1:一个数是最小因数是1,最大因数是它本身。
生2:一个数因数的个数是有限的。
生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。
【设计意图】
用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。
4.师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。
(板书课题)
.
(二)探究新知
1. 找出1—20各数的因数,看看它们的因数的个数有什么规律。
(1)学生小组内交流,写出1——20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)
1的因数有:1 11的因数有:1,11
2的因数有:1,2 12的因数有:1,2,3,4,6,12
3的因数有:1,3 13的因数有:1,13
4的因数有:1,2,4 14的因数有:1,2,7,14
5的因数有:1,5 15的因数有:1,3,5,15
6的因数有:1,2,3,6 16的因数有:1,2,4,8,16
7的因数有:1,7 17的因数有:1,17
8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18
9的因数有:1,3,9 19的因数有:1,19
10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20
(2)师:观察它们因数的个数,你发现了什么?
小组讨论:根据因数的个数,你觉得可以怎样分类?
(3)(课件第6张)
生1:有的数只有两个因数,如5的因数是1和5。1只有一个因数1。
生2:有的数的因数不止两个……我们来分分类吧!
2.学习质数与合数(出示课件第7张)
师:一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。如2、3、5、7都是质数。
一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。
1既不是质数,也不是合数。
3.做质数表。(课件第8张)
(1)找出100以内的质数,做一个质数表。
(2)学生讨论:怎样找100以内的质数?说说你的方法。
(课件第10张)
生1:可以把每个数都验证一下,看哪些数是质数。
生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。3的倍数也可以……
划到几的倍数就可以了?
生3:划到7的倍数就可以了.
(3)(课件第11张演示)剩下的数都是质数。
(4)师出示100以内的质数表(课件第12张)
4.牛刀小试。(课件第13张)
(1)将下面的各数分别填入指定的圈内。
2 27 37 11 58 61 73 83 95
(2)两个质数,和是10,积是21,这两个质数是多少?
生:21=3×7,3和7都是质数,而且3+7=10,所以这两个质数就是3和7。
两个质数,和是7,积是10,这两个质数是多少?
10=2×5,2和5都是质数,而且2+5=7,所以这两个质数就是2和5。
5.探索两数之和的奇偶性。(课件第15张)
师:奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?
(1)师:从题目中你知道了什么?
生1:题目让我们对奇数、偶数的和做一些探索。
生2:我把问题表示成这样……
(2)小组讨论:你怎样判断任意两个整数的和是奇数还是偶数?
(3)汇报交流:
生1:我随便找几个奇数、偶数,加起来看一看。(课件第17张)
奇数:5, 7, 9, 11,…
偶数:8,12,20,24,…
5+7=12
7+9=16
……
奇数+奇数=偶数
5+8=13
7+12=19
……
奇数+偶数=奇数
8+12=20
12+20=32
……
偶数+偶数=偶数
(课件第18张)生2: 奇数除以2余1
偶数除以2余0
奇数加偶数的和除以2还余1,所以,奇数+偶数=奇数。
奇数加奇数的和除以2余0,所以,奇数+奇数=偶数。
偶数加偶数的和除以2还余0,所以,偶数+偶数=偶数。
(4)师:同桌讨论:这个结论正确吗?你还有其他的方法吗?试一试。
同桌找一些大数,验证一下所得的结论是否正确。
(5)(课件第20张)汇报交流:
534+319=853
所以:偶数+奇数=奇数
681+249=930
所以:奇数+奇数=偶数
564+232=796
所以:偶数+偶数=偶数
【设计意图】
用归纳的方法得出结论,培养学生的能力。
6.火眼金睛辨对错。(课件第21张)
(1)所有的奇数都是质数。 (×)
(2)所有的偶数都是合数。 (×)
(3)在1,2,3,4,5中,除了质数以外都是合数。( ×)
(4)两个质数的和是偶数。(×)
(5)两个奇数的和是偶数。 (√)
7.小结:刚才的学习你学会了什么?(课件第22张)
(1)质数与合数的概念。
一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,除了1和它本身还有别的因数,这样的数叫做合数。
(2)1既不是质数,也不是合数。
(3)自然数可以分为质数、合数和1。
(4)偶数+奇数=奇数
奇数+奇数=偶数
偶数+偶数=偶数
(三)课堂练习
谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?
1.写出下面各数的因数。(课件第23张)
(1)在50以内的自然数中,最大的质数是( 47),最小的合数是(4)。
(2)既是质数又是奇数的最小一位数是(3)。
(3)如果两个质数的和是24,可以是(5)+( 19),(7)+(17)或(11)+(23) 。
(4)在自然数中,最小的奇数是(1),最小的偶数是(0 ),最小的质数是(2),最小的合数是(4)。
2. 不计算,判断下面算式的结果是奇数还是偶数。 (课件第24张)
1+2+3+4+…+40
生:1—40的自然数中,奇数和偶数各有20个,因为奇数+奇数=偶数,20个奇数相加和是偶数,偶数+偶数=偶数,20个偶数相加和是偶数,所以最后结果一定是偶数。
(四)拓展提高
算一算:3个不同质数的和是最小合数的平方,这3个质数的积是多少?
最小的合数是4,4²=16。
哪3个质数的和是16呢?
2+3+11=16
2×3×11=66
答:这3个质数的积是66。
(五)课堂总结
师:通过学习,你有什么收获?
生交流: 1.一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。
2.一个数,除了1和它本身还有别的因数,这样的数叫做合数。
3.1既不是质数也不是合数。
4.奇数+奇数=偶数 奇数+偶数=奇数 偶数+偶数=偶数
(六)板书设计
质数和合数
一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,除了1和它本身还有别的因数,这样的数叫做合数。
1既不是质数也不是合数。
【教学反思】
在教学质数和合数这一课时,我运用了自主、合作、探究的教学方法,使学生在参与中产生求知欲望,调动学习积极性。首先用猜谜语的形式引入课题,在学生复习因数和倍数的知识的基础上,让学生独立写出1-20这20个数的因数,再根据因数多少进行分类,然后以小组为单位交流,学生通过交流,知道可以分为几种情况,从而引出质数、合数的概念。?在教学中教师努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验。
课堂上学生是“主角”,教师只是一个“配角”,最大限度地把时间和空间都留给学生,使每个学生都参仔细观察,认真思考,充分激发学生思维的主动性和积极性。在课堂中,要求学生观察1——20的因数的个数,自己按照一定的标准进行分类,分完后先小组内交流。说说你是按什么来分的?分成了哪几类?由于采用分的标准也必定不同,然后在让学生说标准的过程中,感悟到质数和合数的各自特征,一点点的提炼归纳出质数和合数的意义。培养学生的分类、观察、分析、归纳和交流的数学能力,建立正确的分类思想。整个过程都是学生在动手操作、交流讨论、归纳概括,而教师只是在关键之处适当点拔,引导学生质疑、释疑、归纳、
相关教案
小学数学质数和合数教案设计: 这是一份小学数学质数和合数教案设计,共3页。
人教版五年级下册质数和合数教学设计及反思: 这是一份人教版五年级下册质数和合数教学设计及反思,共4页。
人教版五年级下册质数和合数教案设计: 这是一份人教版五年级下册质数和合数教案设计,共10页。教案主要包含了教师准备,学生准备,参考答案等内容,欢迎下载使用。