![3.1.1 椭圆及其标准方程教案-2023-2024学年高二上学期数学人教A版第1页](http://img-preview.51jiaoxi.com/3/3/15213291/0-1705133533108/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![3.1.1 椭圆及其标准方程教案-2023-2024学年高二上学期数学人教A版第2页](http://img-preview.51jiaoxi.com/3/3/15213291/0-1705133533191/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.1 椭圆教案设计
展开
这是一份人教A版 (2019)选择性必修 第一册第三章 圆锥曲线的方程3.1 椭圆教案设计,共4页。教案主要包含了教学目标,教材分析,活动设计,教学过程,布置作业等内容,欢迎下载使用。
一、教学目标
1.知识教学点
使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.
2.能力训练点
通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.
3.学科渗透点
通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.
二、教材分析
1.重点:椭圆的定义和椭圆的标准方程.
(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)
2.难点:椭圆的标准方程的推导.
(解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.)
3.疑点:椭圆的定义中常数加以限制的原因.
(解决办法:分三种情况说明动点的轨迹.)
三、活动设计
提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.
四、教学过程
(一)椭圆概念的引入
前面,大家学习了曲线的方程等概念,哪一位同学回答:
问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?
对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.
提出这一问题以便说明标准方程推导中一个同解变形.
问题2:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?
一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:
“到两定点距离之和等于常数的点的轨迹.”
“到两定点距离平方差等于常数的点的轨迹.”
“到两定点距离之差等于常数的点的轨迹.”
教师要加以肯定,以鼓励同学们的探索精神.
比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:
取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.
教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等……
认识椭圆(幻灯片)
在此基础上,引导学生概括椭圆的定义:
平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.
学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:
(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.
(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.
(二)椭圆标准方程的推导
1.标准方程的推导
由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.
如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.
(1)建系设点
建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.
以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).
(2)点的集合
由定义不难得出椭圆集合为:
P={M||MF1|+|MF2|=2a}.
(3)代数方程
(4)化简方程
化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)
②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要(a>b>0).
关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.
示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.
2.两种标准方程的比较(引导学生归纳)
F1(-c,0)、F2(c,0),这里c2=a2-b2;
F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.
教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.
(三)例题与练习
五、布置作业
相关教案
这是一份高中数学人教A版 (2019)选择性必修 第一册3.1 椭圆教学设计,共6页。
这是一份人教A版 (2019)选择性必修 第一册3.1 椭圆优质课第一课时教学设计,共8页。
这是一份人教A版 (2019)选择性必修 第一册3.1 椭圆教学设计,共11页。教案主要包含了教学目标,教学重点,学法与教学用具,教学过程,教学反思等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)