河北省保定市蠡县2022-2023学年八年级上学期期末模拟测试数学试卷
展开1. 下列手机手势解锁图案中,是轴对称图形是( )
A. B.
C. D.
2. 下列图形具有稳定性的是( )
A. B. C. D.
3. 刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是( )
A. 6cm的木条B. 8cm的木条C. 两根都可以D. 两根都不行
4. 把分式的x,y均扩大为原来的10倍后,则分式的值
A. 为原分式值的B. 为原分式值的
C. 为原分式值的10倍D. 不变
5. 下列从左到右的运算是因式分解的是( )
A. 2x2﹣2x﹣1=2x(x﹣1)﹣1B. 4a2+4a+1=(2a+1)2
C. (a+b)(a﹣b)=a2﹣b2D. x2+y2=(x+y)2﹣2xy
6. 如图,已知是等腰三角形,,平分,若,则的长为( )
A. 2B. 3C. 4D. 8
7. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )
A. 3B. 4C. 6D. 8
8. 点在的角平分线上,点到边的距离等于,点是边上的任意一点,则下列选项正确的是( )
A. B. C. D.
9. 如图,在ΔABC中,DE是AC的垂直平分线,AE=3cm,ΔABD的周长为13cm,则ΔABC的周长是( )
A. 13cmB. 16cmC. 19cmD. 22cm
10. 如图,已知在中,,,嘉淇通过尺规作图得到,交于点D,根据其作图痕迹,可得的度数为( )
A. 120°B. 110°C. 100°D. 98°
11. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
12. 下列关于分式的判断中错误的是( )
A. 当时,有意义B. 当时,的值为0
C. 无论x为何值,的值总为正数D. 无论x为何值,不可能得整数值
13. 一个三角形两边长分别为4和6,且第三边长为整数,这样的三角形的周长最小值是( )
A. 20B. 16C. 13D. 12
14. 如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于的长为半径画弧,两弧在内交于点H,画射线AH交DC于点M.若,则的大小为( )
A. B. C. D.
15. 如图,已知在中,,点D,E分别在边,上,,,若,则的度数为( )
A. 30°B. 40°C. 50°D. 60°
16. 已知关于x的分式方程无解,则k的值为( )
A. 0B. 0或-1C. -1D. 0或
二.填空题(本大题共3题,总计 12分)
17. 当________时,分式无意义.
18. 如图,中,,,分别以点,为圆心,以大于的长为半径画弧交于点,,直线交于点,交于点.若,则__.
19. 如图,先将正方形纸片对折,折痕为,再把点折叠到折痕上,折痕为,点在上的对应点为,则______°.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)因式分解:;
(2)计算:.
21. 先化简,再求值:已知,其中x满足.
22. 如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).
(1)如图1,作出△ABC关于直线m轴对称图形△A′B′C′;
(2)如图2,在直线m上找到一点P,使PA+PB的值最小;
(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影.
(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.
23. 如图,AD平分∠BAC,∠EAD=∠EDA,∠B=54°.
(1)求∠EAC的度数;
(2)若∠CAD:∠E=2:5;求∠E的度数.
24. 已知,其中,
(1)判断A与B的大小;
(2)阅读下面对B分解因式的方法:.请解决下列两个问题:
①仿照上述方法分解因式:;
②指出A与C哪个大,并说明理由.
25. 随着科技与经济的发展,机器人自动化线的市场越来越大,并且逐渐成为自动化生产线的主要方式某化工厂要在规定时间内搬运1800千克化工原料,现有A,B两种机器人可供选择,已知A型机器人每小时完成的工作量是B型机器人的1.5倍,A型机器人单独完成所需的时间比B型机器人少10小时.
(1)求两种机器人每小时分别搬运多少千克化工原料?
(2)若A型机器人工作1小时所需的费用为80元,B型机器人工作1小时所需的费用为60元,若该工厂在两种机器人中选择其中的一种机器人单独完成搬运任务,则选择哪种机器人所需费用较小?请计算说明.
26. 如图1,在长方形中,,点P从点B出发,以的速度沿向点C运动(点P运动到点C处时停止运动),设点P的运动时间为.
(1)_____________.(用含t的式子表示)
(2)当t何值时,?
(3)如图2,当点P从点B开始运动,同时,点Q从点C出发,以的速度沿向点D运动(点Q运动到点D处时停止运动,两点中有一点停止运动后另一点也停止运动),是否存在这样的值使得与全等?若存在,请求出的值;若不存在,请说明理由.
蠡县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
解析:A.不是轴对称图形,故此选项错误;
B.不是轴对称图形,故此选项错误;
C.是轴对称图形,故此选项正确;
D.不是轴对称图形,故此选项错误.
故选:C.
2.【答案】:A
解析:A.具有稳定性,符合题意;
B.不具有稳定性,故不符合题意;
C.不具有稳定性,故不符合题意;
D.不具有稳定性,故不符合题意,
故选:A.
3.【答案】:B
解析:解:利用三角形的三边关系可得应把8cm的木条截成两段,
如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,
而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.
故选:B.
4.【答案】:A
解析:x、y均扩大为原来的10倍后,
∴
故选A.
5.【答案】:B
解析:解:A、没把一个多项式转化成几个整式积的形式,故本选项错误;
B、把一个多项式转化成几个整式积的形式,故本选项正确;
C、是整式的乘法,故本选项错误;
D、没把一个多项式转化成几个整式积的形式,故本选项错误;
故选:B.
6.【答案】:B
解析:解:在是等腰三角形,,平分,
由三线合一性质得:
故选:B.
7.【答案】:D
解析:解:∵正多边形的一个内角是135°,
∴该正多边形的一个外角为45°,
∵多边形的外角之和为360°,
∴边数=,
∴这个正多边形的边数是8.
故选:D.
8.【答案】:B
解析:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,
∴点P到OB的距离为5,
∵点Q是OB边上的任意一点,
∴PQ≥5.
故选:B.
9.【答案】:C
解析:解:∵DE是AC的垂直平分线,
∴AD=CD,AC=2AE=6cm,
又∵△ABD的周长=AB+BD+AD=13cm,
∴AB+BD+CD=13cm,
即AB+BC=13cm,
∴△ABC的周长=AB+BC+AC=13+6=19cm.
故选:C.
10.【答案】:B
解析:根据作图痕迹可知,是∠ABC的平分线,
∵,,
∴
∵是∠ABC的平分线,
∴
∴
故选:B.
11.【答案】:A
解析:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
12.【答案】:D
解析:A选项,当时,有意义,故不符合题意;
B选项,当时,的值为0,故不符合题意;
C选项,,则无论x为何值,的值总为正数,故不符合题意;
D选项,当时,,故符合题意;
故选:D.
13.【答案】:C
解析:解:设三角形的第三边为x,
∵三角形的两边长分别为4和6,
∴2<x<10,
∵第三边为整数,
∴第三边x的最小值为3,
∴三角形周长的最小值为:3+4+6=13.
故选:C
14.【答案】:B
解析:解:四边形是长方形,
,
,
由题意可知,平分,
,
,
故选:B.
15.【答案】:C
解析:如图,过点D作于点F.
∴在和中,
∴,
∴,
∴AD为的角平分线,
∴,
∴.
故选C.
16.【答案】:D
解析:解:分式方程去分母得: ,即 ,
当,即 时,方程无解;
当x=-1时,-3k+1=-3k,此时k无解;
当x=0时,0=-3k,k=0,方程无解;
综上,k的值为0或 .
故答案为:D.
二. 填空题
17.【答案】:
解析:依题意得:,
解得:,
18.【答案】: 6
解析:连接,如图,
由作法得垂直平分,
,
,
,
,
,
.
故答案为:6.
19.【答案】: 75
解析:解:∵正方形纸片对折,折痕为MN,
∴MN是AD的垂直平分线 ,
∴MA=MD= ,
∵把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,
∴AB=AH,
∵四边形ABCD正方形 ,
∴AD=AB,
∴AH=AD=2AM,
∵∠AMH=90°,AM=,
∴∠AHM=30°,
∵MN∥AB,
∴∠BAH=30°,
在△AHB中,AH=AB,
∴∠ABH=.
故答案为:75.
三.解答题
20【答案】:
(1);
(2);
解析:
解:(1)原式
=;
(2)
=
=;
21【答案】:
;
解析:
解:原式=
原式.
22【答案】:
(1)见解析 (2)见解析
(3)见解析 (4)见解析
解析:
【小问1解析】
如图所示,△A′B′C′即为所求作,
【小问2解析】
如图,点P即为所求作,
【小问3解析】
如图,即为所作,
【小问4解析】
如图,选择格点D、E,证明△ACD≌△BCE.于是,AC=BC.
选择格点Q,证明△ACQ≌△BCQ,于是,AQ=BQ.
∴CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.
23【答案】:
(1)∠EAC=54°;
(2).
解析:
【小问1解析】
∵∠EAD=∠EDA,
∴∠EAC+∠CAD=∠B+∠BAD,
∵AD平分∠BAC,
∴∠CAD=∠BAD.
∴∠EAC=∠B.
∵∠B=54°,
∴∠EAC=54°.
【小问2解析】
设∠CAD=2x,则∠E=5x,∠DAB=2x,
∵∠B=54°,
∴∠EDA=∠EAD=2x+54°.
∵∠EDA+∠EAD+∠E=180°,
∴2x+54°+2x+54°+5x=180°.
解得x=8°.
∴∠E=5x=40°.
24【答案】:
(1);
(2)①②当 ,,当时,,当时,,理由见解析.
解析:
(1)∵
,
∴.
(2)①
,
②
,
∵,
∴,
从而当时,,
当时,,
当时,.
25【答案】:
(1)A型机器人每小时搬运90千克化工原料,B型机器人每小时搬运60千克化工原料;
(2)选择A型机器人所需费用较小,理由见解析
解析:
(1)设B型机器人每小时搬运x千克化工原料,则A型机器人每小时搬运1.5x千克化工原料,
根据题意,得
整理,得1800=2700﹣1.5x
解得x=60
检验:当x=60时,1.5x≠0
所以,原分式方程的解为x=60
答:A型机器人每小时搬运90千克化工原料,B型机器人每小时搬运60千克化工原料;
(2)A型机器人单独完成搬运任务所需的费用为:×80=1600(元)
B型机器人单独完成搬运任务所需的费用为:×80=1800(元)
因为1600<1800
所以选择A型机器人所需费用较小.
26【答案】
河北省保定市望都县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省保定市望都县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共14页。试卷主要包含了选择题等内容,欢迎下载使用。
河北省保定市唐县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省保定市唐县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共13页。试卷主要包含了选择题等内容,欢迎下载使用。
河北省保定市曲阳县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省保定市曲阳县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共15页。试卷主要包含了选择题等内容,欢迎下载使用。