2023-2024学年广东省数学九年级上期末测试模拟试题
展开
这是一份2023-2024学年广东省数学九年级上期末测试模拟试题,共20页。试卷主要包含了答题时请按要求用笔,函数y=ax2+1与,下列方程中,是一元二次方程的是等内容,欢迎下载使用。
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,是二次函数图象的一部分,在下列结论中:①;②;③有两个相等的实数根;④;其中正确的结论有( )
A.1个B.2 个C.3 个D.4个
2.抛物线y=﹣2x2经过平移得到y=﹣2(x+1)2﹣3,平移方法是( )
A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位
C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位
3.在半径为的圆中,挖出一个半径为的圆面,剩下的圆环的面积为,则与的函数关系式为 ( )
A.B.C.D.
4.如图,将△ABC绕着点A顺时针旋转30°得到△AB′C′,若∠BAC′=80°,则∠B′AC=( )‘
A.20°B.25°C.30°D.35°
5.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应( )
A.不小于4.8ΩB.不大于4.8ΩC.不小于14ΩD.不大于14Ω
6.抛物线可以由抛物线平移得到,下列平移正确的是( )
A.先向左平移3个单位长度,然后向上平移1个单位
B.先向左平移3个单位长度,然后向下平移1个单位
C.先向右平移3个单位长度,然后向上平移1个单位
D.先向右平移3个单位长度,然后向下平移1个单位
7.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
8.如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是( )
A.B.C.2D.
9.若关于的一元二次方程有实数根,则取值范围是( )
A.B.C.D.
10.下列方程中,是一元二次方程的是( )
A.2x+y=1B.x2+3xy=6C.x+=4D.x2=3x﹣2
11.下列四个图形中,既是中心对称图形,又是轴对称图形的是( )
A.B.C.D.
12.下图中,最能清楚地显示每组数据在总数中所占百分比的统计图是( )
A.B.
C.D.
二、填空题(每题4分,共24分)
13.如图,分别为矩形的边,的中点,若矩形与矩形相似,则相似比等于__________.
14.已知抛物线,那么点P(-3,4)关于该抛物线的对称轴对称的点的坐标是______.
15.如图,函数y=的图象所在坐标系的原点是_______.
16.请写出一个一元二次方程,使它的两个根分别为2,﹣2,这个方程可以是_____.
17.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.
18.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:
根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).
三、解答题(共78分)
19.(8分)已知关于的一元二次方程 (是常量),它有两个不相等的实数根.
(1)求的取值范围;
(2)请你从或或三者中,选取一个符合(1)中条件的的数值代入原方程,求解出这个一元二次方程的根.
20.(8分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
21.(8分)已知矩形的周长为1.
(1)当该矩形的面积为200时,求它的边长;
(2)请表示出这个矩形的面积与其一边长的关系,并求出当矩形面积取得最大值时,矩形的边长.
22.(10分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)
与每件销售价x(元)的关系数据如下:
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
23.(10分)如图,一艘船由A港沿北偏东65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向.
求:(1)∠C的度数;
(2)A,C两港之间的距离为多少km.
24.(10分)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.
25.(12分)如图,已知直线y=x+2与x轴、y轴分别交于点B,C,抛物线y=x2+bx+c过点B、C,且与x轴交于另一个点A.
(1)求该抛物线的表达式;
(2)若点P是x轴上方抛物线上一点,连接OP.
①若OP与线段BC交于点D,则当D为OP中点时,求出点P坐标.
②在抛物线上是否存在点P,使得∠POC=∠ACO若存在,求出点P坐标;若不存在,请说明理由.
26.总书记指出,到2020年全面建成小康社会,实现第一个百年奋斗目标.为贯彻的指示,实现精准脱贫,某区相关部门指导对口帮扶地区的村民,加工包装当地特色农产品进行销售,以增加村民收入.已知该特色农产品每件成本10元,日销售量(袋)与每袋的售价(元)之间关系如下表:
如果日销售量y (袋)是每袋的售价x(元)的一次函数,请回答下列问题:
(1)求日销售量y(袋)与每袋的售价x(元)之间的函数表达式;
(2)求日销售利润(元)与每袋的售价(元)之间的函数表达式;
(3)当每袋特色农产品以多少元出售时,才能使每日所获得的利润最大?最大利润是多少元?
(提示:每袋的利润=每袋的售价每袋的成本)
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对各个结论进行判断.
【详解】解:由抛物线的开口方向向上可推出a>0,
与y轴的交点为在y轴的负半轴上可推出c=-1<0,
对称轴为,a>0,得b<0,
故abc>0,故①正确;
由对称轴为直线,抛物线与x轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(-1,0)之间,
所以当x=-1时,y>0,
所以a-b+c>0,故②正确;
抛物线与y轴的交点为(0,-1),由图象知二次函数y=ax2+bx+c图象与直线y=-1有两个交点,
故ax2+bx+c+1=0有两个不相等的实数根,故③错误;
由对称轴为直线,由图象可知,
所以-4a<b<-2a,故④正确.
所以正确的有3个,
故选:C.
本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.
2、A
【分析】由抛物线y=−2x2得到顶点坐标为(0,0),而平移后抛物线y=−2(x+1)2−3的顶点坐标为(−1,−3),根据顶点坐标的变化寻找平移方法.
【详解】根据抛物线y=−2x2得到顶点坐标为(0,0),
而平移后抛物线y=−2(x+1)2−3的顶点坐标为(−1,−3),
∴平移方法为:向左平移1个单位,再向下平移3个单位.
故选:A.
本题主要考查了抛物线的平移,熟练掌握相关概念是解题关键.
3、D
【分析】根据圆环的面积=大圆的面积-小圆的面积,即可得出结论.
【详解】解:根据题意:y=
故选D.
此题考查的是圆环的面积公式,掌握圆环的面积=大圆的面积-小圆的面积是解决此题的关键.
4、A
【解析】根据图形旋转的性质,图形旋转前后不发生任何变化,对应点旋转的角度即是图形旋转的角度,可直接得出∠C′AC=30°,由∠BAC′=80°可得∠BAC=∠B′AC′=50°,从而可得结论.
【详解】由旋转的性质可得,∠BAC=∠B′AC′,
∵∠C′AC=30°,
∴∠BAC=∠B′AC′=50°,
∴∠B′AC=20°.
故选A.
此题主要考查了旋转的性质,图形旋转前后不发生任何变化,这是解决问题的关键.
5、A
【分析】先由图象过点(1,6),求出U的值.再由蓄电池为电源的用电器限制电流不得超过10A,求出用电器的可变电阻的取值范围.
【详解】解:由物理知识可知:I=,其中过点(1,6),故U=41,当I≤10时,由R≥4.1.
故选A.
本题考查反比例函数的图象特点:反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.
6、B
【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.
【详解】解:抛物线的顶点为(0,0),抛物线的顶点为(-3,-1),抛物线向左平移3个单位长度,然后向下平移1个单位得到抛物线.
故选:B.
本题考查的知识点是二次函数图象平移问题,解答是最简单的方法是确定平移前后抛物线顶点,从而确定平移方向.
7、B
【解析】试题分析:分a>0和a<0两种情况讨论:
当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;
当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.
故选B.
考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.
8、B
【分析】取点H(6,0),连接PH,由待定系数法可求抛物线解析式,可得点C坐标, 可得⊙C半径为4,由三角形中位线的定理可求OD=PH, 当点C在PH上时,PH有最大值,即可求解.
【详解】如图,取点H(6,0),连接PH,
∵抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),
∴,
解得:,
∴抛物线解析式为:y=﹣,
∴顶点C(﹣3,4),
∴⊙C半径为4,
∵AO=OH=6,AD=BD,
∴OD=PH,
∴PH最大时,OD有最大值,
∴当点C在PH上时,PH有最大值,
∴PH最大值为=3+ =3+,
∴OD的最大值为: ,
故选B.
本题主要考查了切线的性质,二次函数的性质,三角形中位线定理等知识,解决本题的关键是要熟练掌握二次函数性质和三角形中位线的性质.
9、D
【分析】根据△=b2-4ac≥0,一元二次方程有实数根,列出不等式,求解即可.
【详解】解:∵关于x的一元二次方程有实数根,
∴
解得:.
故选:D.
本题考查一元二次方程根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.
10、D
【分析】利用一元二次方程的定义判断即可.
【详解】解:A、原方程为二元一次方程,不符合题意;
B、原式方程为二元二次方程,不符合题意;
C、原式为分式方程,不符合题意;
D、原式为一元二次方程,符合题意,
故选:D.
此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.
11、D
【分析】根据轴对称图形与中心对称图形的概念,并结合图形的特点求解.
【详解】解:A、不是轴对称图形,是中心对称图形,故选项错误;
B、不是轴对称图形,是中心对称图形,故选项错误;
C、是轴对称图形,不是中心对称图形,故选项错误;
D、是轴对称图形,是中心对称图形,故选项正确.
故选:D.
本题考查了中心对称图形与轴对称图形的概念.
轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;
中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.
12、A
【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.
【详解】解:在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图.
故选:A.
本题考查统计图的选择,解决本题的关键是明确:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别.
二、填空题(每题4分,共24分)
13、(或)
【分析】根据矩形的性质可得EF=AB=CD,AE=AD=BC,根据相似的性质列出比例式,即可得出,从而求出相似比.
【详解】解:∵分别为矩形的边,的中点,
∴EF=AB=CD,AE=AD=BC,
∵矩形与矩形相似
∴
∴
∴
∴相似比=(或)
故答案为:(或).
此题考查的是求相似多边形的相似比,掌握相似多边形的性质是解决此题的关键.
14、(1,4).
【解析】试题解析:抛物线的对称轴为:
点关于该抛物线的对称轴对称的点的坐标是
故答案为
15、M
【分析】由函数解析式可知函数关于y轴对称,即可求解;
【详解】解:由已知可知函数y=的图象关于y轴对称,
所以点M是原点;
故答案为:M.
本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.
16、x2﹣4=0
【分析】根据一元二次方程的根与系数的关系,即可求出答案
【详解】设方程x2﹣mx+n=0的两根是2,﹣2,
∴2+(﹣2)=m,2×(﹣2)=n,
∴m=0,n=﹣4,
∴该方程为:x2﹣4=0,
故答案为:x2﹣4=0
本题主要考查一元二次方程的根与系数的关系,掌握一元二次方程ax2+bx+c=0的两个根x1,x2与系数的关系:x1+x2=,x1x2=,是解题的关键.
17、x=4
【解析】根据函数值相等的点到抛物线对称轴的距离相等,可由点A(1,-4)和点B(6,-4)都在抛物线y=ax²+bx+c的图象上,得到其对称轴为x==1.故答案为x=4.
18、0.1
【解析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.
【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,
故摸到白球的频率估计值为0.1;
故答案为:0.1.
本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.
三、解答题(共78分)
19、(1);(2),
【分析】(1)由一元二次方程有两个不相等的实数根,根据根的判别式,建立关于k的不等式,即可求出k的取值范围;
(2)在k的取值范围内确定一个k的值,代入求得方程的解即可.
【详解】解:(1)由题意,得
整理,得,所以的取值范围是;
(2)由(1),知,
所以在或或三者中取,
将代入原方程得:,
化简得:,
因式分解得:,
解得两根为,.
本题考查了一元二次方程根的判别式及因式分解法解一元二次方程的知识,题目难度一般,需要注意计算的准确度和正确确定k的值.
20、(1)y=﹣x2+x+2(2)(,4)或(,)或(,﹣)(3)(2,1)
【解析】(1)利用待定系数法转化为解方程组即可.
(2)如图1中,分两种情形讨论①当CP=CD时,②当DP=DC时,分别求出点P坐标即可.
(3)如图2中,作CM⊥EF于M,设则(0≤a≤4),根据S四边形CDBF=S△BCD+S△CEF+S△BEF构建二次函数,利用二次函数的性质即可解决问题.
【详解】解:(1)由题意
解得
∴二次函数的解析式为
(2)存在.如图1中,
∵C(0,2),
∴CD=
当CP=CD时,
当DP=DC时,
综上所述,满足条件的点P坐标为或或
(3)如图2中,作CM⊥EF于M,
∵B(4,0),C(0,2),
∴直线BC的解析式为设
∴(0≤a≤4),
∵S四边形CDBF=S△BCD+S△CEF+S△BEF
,
∴a=2时,四边形CDBF的面积最大,最大值为,
∴E(2,1).
本题考查二次函数综合题、一次函数的应用、待定系数法,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,属于中考压轴题.
21、(1)矩形的边长为10和2;(2)这个矩形的面积S与其一边长x的关系式是S=-x2+30x;当矩形的面积取得最大值时,矩形是边长为15的正方形.
【分析】(1)设矩形的一边长为,则矩形的另一边长为,根据矩形的面积为20列出相应的方程,从而可以求得矩形的边长;
(2)根据题意可以得到矩形的面积与一边长的函数关系,然后根据二次函数的性质可以求得矩形的最大面积,并求出矩形面积最大时它的边长.
【详解】解:(1)设矩形的一边长为,则矩形的另一边长为,根据题意,得
,解得,.
答:矩形的边长为10和2.
(2)设矩形的一边长为,面积为S,根据题意可得,
,
所以,当矩形的面积最大时,.
答:这个矩形的面积与其一边长的关系式是S=-x2+30x,当矩形面积取得最大值时,矩形是边长为15的正方形.
本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程以及函数关系式,利用二次函数的性质解答.
22、(1)y=-2x+100;(2)35元或45元;(3)W=-2x2+160x-3000,40元时利润最大.
【解析】试题分析:(1)设一次函数解析式,将表格中任意两组x,y值代入解出k,b,即可求出该解析式;(2)利润等于单件利润乘以销售量,而单件利润又等于每件商品的销售价减去进价,从而建立每件商品的销售价与利润的一元二次方程求解;(3)将w替换上题中的150元,建立w与x的二次函数,化成一般式,看二次项系数,讨论x取值,从而确定每件商品销售价定为多少元时利润最大.
试题解析:(1)设该函数的表达式为y=kx+b(k≠0),根据题意,得,解得,∴该函数的表达式为y=-2x+100;(2)根据题意得:(-2x+100)(x-30)="150" ,解这个方程得,x1=35,x2=45∴每件商品的销售价定为35元或45元时日利润为150元.(3)根据题意得:w=(-2x+100)(x-30)=-2x2+160x-3000=-2(x-40)2+200,∵a=-2
相关试卷
这是一份广东省潮阳区华侨中学2023-2024学年九上数学期末综合测试模拟试题含答案,共7页。试卷主要包含了如果反比例函数的图像经过点等内容,欢迎下载使用。
这是一份2023-2024学年广东省茂名市九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份广东省广州市天河2023-2024学年九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了国家规定存款利息的纳税办法是,抛物线y=的对称轴方程为等内容,欢迎下载使用。