河北省邢台市宁晋县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析)
展开
这是一份河北省邢台市宁晋县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共19页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 用数学的眼光观察下面的网络图标,其中可以抽象成轴对称图形的是( )
A. B. C. D.
2. 下列运算正确的是( )
A. a2•a3=a6B. a5÷a3=a2
C. a2+a3=a5D. (a2)3=a5
3. 华为手机使用了自主研发的海思麒麟芯片,目前最新的型号是麒麟990.芯片是由很多晶体管组成的,而芯片技术追求是体积更小的晶体管,以便获得更小的芯片和更低的电力功耗,而麒麟990的晶体管栅极的宽度达到了毫米,将数据用科学记数法表示为( )
A. B. C. D.
4. △ABC中,AB=3,AC=2,BC=a,下列数轴中表示的a的取值范围,正确的是( )
A. B.
C. D.
5. 若,则2n-3m的值是( )
A. -1B. 1C. 2D. 3
6. 已知:,,则的值是( )
A. B. C. 4D.
7. 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )
A. 7cmB. 3cmC. 9cmD. 5cm
8. 如图,,下列等式不一定正确的是( )
A. B. C. D.
9. 化简.这个代数式的值和a,b哪个字母的取值无关.( )
A. a和bB. a
C. bD. 不能确定
10. △ABC中,∠C=90°,∠A的平分线交BC于点D,如果AB=8,CD=3,则△ABD的面积为( )
A. 24B. 12C. 8D. 6
11. 如果把分式中的,都扩大3倍,那么分式的值( )
A. 扩大3倍B. 不变
C. 缩小3倍D. 扩大9倍
12. 如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为( )
A. 40°B. 50°C. 80°D. 100°
13. 如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60°B. 50°C. 40°D. 30°
14. 如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是( ).
A. Rt△ACD和Rt△BCE全等B. OA=OB
C. E是AC的中点D. AE=BD
15. 如图,等边的边长为4,是边上的中线,是边上的动点,是边上一点,若,当取得最小值时,则的度数为( )
A. B. C. D.
16. 如图,已知∠MON=30°,点…在射线ON上,点…在射线OM上:…均为等边三角形.若=1,则的边长为( )
A. 2021B. 4042C. D.
二.填空题(本大题共3题,总计 12分)
17. (1)已知,则的值是_______.
(2)若是完全平方式,则_______.
18. 如图,在锐角△ABC中,∠BAC 40°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM MN有最小值时,_____________°.
19. 已知是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线的对称点为点E.
(1)如图1,连接,,,当时,根据边的关系,可判定的形状是___________三角形;
(2)如图2,当点D在延长线上时,连接,,,,延长到点G,使,连接,交于点F,F为的中点.若,则的长为___________.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算
(1)(﹣2a2)(3ab2﹣5ab3)
(2)(5x+2y)•(3x﹣2y)
21. 先化简,再求值,其中|x|=2.
22. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出关于轴对称的.
(2)写出点的坐标(直接写答案).
(3)的面积为___________
23. 已知,如图,为等边三角形,,AD,BE相交于点P,于Q.
(1)求证:;
(2)求的度数;
(3)若,,求AD的长.
24. 请你阅读下面小王同学的解题过程,思考并完成任务:
先化简,再求值:,其中:.
解:原式……第一步
……第二步
……第三步
……第四步
………………………………第五步
当时,原式.
(1)任务一:以上解题过程中,第________步是约分,其变形依据是________;
(2)任务二:请你用与小明同学不同的方法,完成化简求值;
(3)任务三:根据平时的学习经验,就分式化简时需要注意的事项给同学们提一条建议.
25. 某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餍椅的总数量不超过200张.该商场计划将餐桌成套(一张餐桌和四张餐椅配成一套)销售,多余的桌或椅以零售方式销售.请问当进货量最大时获得的利润是多少?
26. 如图,点P、Q分别是等边边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.
(1)如图1,连接AQ、CP求证:
(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,大小是否变化?若变化,请说明理由;若不变,求出它的度数
(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
宁晋县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
解析:解:选项不是轴对称图形,故不符合题意;
选项不是轴对称图形,故不符合题意;
选项是轴对称图形,故符合题意;
选项不是轴对称图形,故不符合题意;
故选:
2.【答案】:B
解析:A、a2•a3=a5,故本选项错误,不符合题意;
B、a5÷a3=a2,故本选项正确,符合题意;
C、a2和a3不是同类项,无法合并,故本选项错误,不符合题意;
D、(a2)3=a6,故本选项错误,不符合题意;
故选:B
3.【答案】:B
解析:解:=7×10-9.
故选:B.
4.【答案】:A
解析:解:∵△ABC中,AB=3,AC=2,BC=a,
∴1<a<5,
∴A符合,
故选:A.
5.【答案】:B
解析:解:∵,
∴,
∴,
∴.
故选:B
6.【答案】:D
解析:
∴= =4÷8×9=
故选:D
7.【答案】:B
解析:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;
当长是3cm的边是腰时,底边长是:13﹣3﹣3=7(cm),而3+3<7,不满足三角形的三边关系.
故底边长:3cm.
故选:B.
8.【答案】:D
解析:,
,,,,
,
,
即只有选项符合题意,选项A、选项B、选项C都不符合题意;
故选:D.
9.【答案】:C
解析:
,
则这个代数式的值与字母b的取值无关,
故选:C.
10.【答案】:B
解析:作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC,
∴DE=CD=3,
∴△ABD的面积为×3×8=12,
故选:B.
11.【答案】:B
解析:.
故选:B.
12.【答案】:C
解析:∵线段AB的垂直平分线交AB于D,交AC于E,
∴AE=BE,
∴∠ABE=∠A=40°,
∵∠BEC=∠A+∠ABE
∴∠BEC=40°+40°=80°.
故选:C.
13.【答案】:C
解析:解:∵FE⊥DB,
∵∠DEF=90°,
∵∠1=50°,
∴∠D=90°﹣50°=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.
14.【答案】:C
解析:解:A.∵∠C=∠C=90°,
∴△ACD和△BCE是直角三角形,
在Rt△ACD和Rt△BCE中,
∵AD=BE,DC=CE,
∴Rt△ACD≌Rt△BCE(HL),正确;
B.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,
在△AOE和△BOD中,
∵
∴△AOE≌△BOD(AAS),
∴AO=OB,正确,不符合题意;
C.AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;
D.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,正确,不符合题意.
故选C.
15.【答案】:C
解析:作点E关于AD对称的点M,连接CM,与AD交于点F,
∵△ABC是等边三角形,AD⊥BC,
∴M在AB上,
∴MF=EF,
∴EF+CF=MF+CF=CM,
即此时EF+CF最小,且为CM,
∵AE=2,
∴AM=2,即点M为AB中点,
∴∠ECF=30°,
故选C.
16.【答案】:B
解析:∵△A1B1A2为等边三角形,
∴∠B1A1A2=60°,
∴∠OB1A1=∠B1A1A2−∠MON=30°,
∴∠OB1A1=∠MON,
∴A1B1=OA1=1,
同理可得A2B2=OA2=2,A3B3=OA3=4=22,
……,
∴△A2021B2021A2022的边长为.
故选:B.
二. 填空题
17.【答案】: ①. ②.
解析:解:(1)
∵
∴
∴原式
故答案为:-11;
(2)∵是完全平方公式
∴原式=
∴.
故答案为:.
18.【答案】: 50
解析:如图,在AC上截取AE=AN,连接BE,
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
∵AM=AM,
∴△AME≌△AMN,
∴ME=MN,
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
当BE是点B到直线AC的距离时,BE⊥AC,
∴∠ABM=90°-∠BAC=90°-40°=50°;
故答案为:50.
19.【答案】: ①. 等边 ②. 6
解析:(1)是等边三角形,理由如下:
点D, E关于直线AC对称,
AD=AE,∠DAC=∠EAC,
是等边三角形,
AB=AC,∠BAC=60°,
点D为线段BC的中点,
,
,
∠DAE=60°,
AD=AE,
是等边三角形;
(2)解:如图2所示,.
证明: F为线段BE的中点,
BF=EF,
是等边三角形,
AC=BC, ,
,
点D, E关于直线AC对称,
CD=CE,∠ACD=∠ACE=120°,
, ,
CE=BG,∠BCE=60°,
,,
,
在△BFG和△EFC中,
,
,
CG=2CF,
在 和 中,
,
,
AD=CG,
,
,
;
故答案为:等边;6.
三.解答题
20【答案】:
(1)﹣6a3b2+10a3b3
(2)15x2﹣4xy﹣4y2.
解析:
(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;
(2)(5x+2y)•(3x﹣2y)
=15x2﹣10xy+6xy﹣4y2)
=15x2﹣4xy﹣4y2.
21【答案】:
,
解析:
=
=
=
=;
∵,
∴,
∵,
∴,
∴原式=.
22【答案】:
(1)见解析;(2)A1(-1,2)、B1(-3,1)、C1(2,-1);(3)
解析:
解:(1)如图所示,△A1B1C1即为所求.
(2)由图知,A1(-1,2)、B1(-3,1)、C1(2,-1);
(3)△A1B1C1的面积=
23【答案】:
(1)见解析 (2)60°
(3)7
解析:
【小问1详解】
证明:为等边三角形,
,,
在△AEB与△CDA中,
,
;
【小问2详解】
解:,
,
,
;
【小问3详解】
解:,,
,
,
,
,
.
24【答案】:
(1)五;分式的基本性质
(2),
(3)见解析
解析:
小问1详解】
解:第五步为约分,其变形依据是分式的基本性质,
故答案为:五;分式的基本性质;
小问2详解】
原式
.
当时,原式.
【小问3详解】
去括号时,要注意符号是否需要改变.(答案不唯一)
25【答案】:
(1)150
(2)当进货量最大时获得的利润是7200元
解析:
(1)根据题意确定等量关系列方程即可.
(2)首先设购进桌子的数量为x,求出其取值范围,再列出总利润和x的函数关系,根据一次函数性质求最大值即可.
【小问1详解】
解:根据题意,得:,解得:
经检验符合实际且有意义.
∴表中a的值为150.
【小问2详解】
解:设餐桌购进x张,则餐椅购进张,
依题意列:
解得:
设利润为W元,
则
∵
∴W随x的增大而增大
∴当 x=30时,W 有最大值
此时 .
答:当进货量最大时获得的利润是7200元.
26【答案】:
(1)证明见解析;(2)不变;60°;(3)不变;120°.
解析:
解:(1)证明:∵三角形ABC为等边三角形,
∴AB=AC,∠ABC=∠CAB=60°,
∵点P、点Q以相同的速度,同时从点A、点B出发,
∴BQ=AP,
在△ABQ与△CAB中,
∴.
(2)角度不变,60°,理由如下:
∵
∴∠CPA=∠AQB,
在△AMP中,
∠AMP=180°-(∠MAP+∠CPA)=180°-(∠MAP+∠AQB)=∠ABC=60°,
∴∠QMC=∠AMP=60°,
故∠QMC的度数不变,度数为60°.
(3)角度不变,120°,理由如下:
当点P、Q在AB、BC的延长线上运动时,
有AP=BQ,∴BP=CQ
∵∠ABC=∠BCA=60°,
∴∠CBP=∠ACQ=120°,
∴
∴∠Q=∠P,
∵∠QCM=∠BCP,
∴∠QMC=∠CBP=120°,
故∠QMC的度数不变,度数为120°.
原进价(元/张)
零售价(元/张)
成套售价(元/套)
餐桌
a
270
500元
餐椅
70
相关试卷
这是一份河北省邢台市宁晋县2022-2023学年八年级上学期期末模拟测试数学试卷+,共19页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省邢台市宁晋县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省邢台市临西县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共14页。试卷主要包含了选择题等内容,欢迎下载使用。