河南省安阳市内黄县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析)
展开1. 下列图案中,是轴对称图形的是( )
A. B. C. D.
2. 某类新型冠状病毒的直径约为0.000000125米,将0.000000125米用科学记数法表示为( )
A. 米B. 米
C. 米D. 米
3. 下列运算正确的是( )
A. B.
C. D.
4. 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )
A. 7cmB. 3cmC. 9cmD. 5cm
5. 如图,要测量池塘两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD.再作出BF的垂线DE,使A,C,E三点在一条直线上,通过证明ΔABC≌ΔEDC,得到DE的长就等于AB的长,这里证明三角形全等的依据是( )
A. HLB. SASC. SSSD. ASA
6. 下列不能用平方差公式直接计算的是( )
A. B.
C D.
7. 若是完全平方式,则m的值为( )
A. 3B. C. 7D. 或7
8. △ABC中,∠C=90°,∠A的平分线交BC于点D,如果AB=8,CD=3,则△ABD的面积为( )
A. 24B. 12C. 8D. 6
9. 如图,把长方形纸片纸沿对角线折叠,设重叠部分为△,那么,下列说法错误的是( )
A. △是等腰三角形,
B. 折叠后∠ABE和∠CBD一定相等
C. 折叠后得到的图形是轴对称图形
D. △EBA和△EDC一定是全等三角形
10. 已知关于x的分式方程无解,则k的值为( )
A. 0B. 0或-1C. -1D. 0或
二.填空题(共5题,总计 15分)
11. 运用完全平方公式计算:(﹣3x+2)2=_________.
12. 若a=(﹣2020)0,b=(﹣0.1)﹣1,c=(﹣)﹣2,则a、b、c大小关系为_____.(用“<”号连接)
13. 若分式有意义,则实数x的取值范围是_______.
14. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是__________
15. 如图,在正方形中,,延长到点,使,连接,动点从点出发,以每秒的速度沿向终点运动.设点的运动时间为秒,当和全等时,的值为 __.
三.解答题(共8题,总计75分)
16. 计算
(1)(﹣2a2)(3ab2﹣5ab3)
(2)(5x+2y)•(3x﹣2y)
17. 化简:.
18. 在平面直角坐标系中,△ABC三个顶点的坐标为:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1与△ABC关于y轴对称,请写出点A1,B1,C1的坐标(直接写答案):A1 ;B1, ;C1 ;
(2)△ABC的面积为 ;
(3)在y轴上画出点P,使PB+PC最小.
19. 如图,AC,BD相交于点O,且AB=DC,AC=DB.求证:∠ABO=∠DCO.
20. 如图,AD平分∠BAC,∠EAD=∠EDA,∠B=54°.
(1)求∠EAC的度数;
(2)若∠CAD:∠E=2:5;求∠E的度数.
21. 解分式方程:
22. 在今年新冠肺炎防疫工作中,某公司购买了、两种不同型号口罩,已知型口罩的单价比型口罩的单价多1.5元,且用8000元购买型口罩的数量与用5000元购买型口罩的数量相同.
(1)、两种型号口罩的单价各是多少元?
(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买型口罩数量是型口罩数量的2倍,若总费用不超过3800元,则增加购买型口罩的数量最多是多少个?
23. (1)问题发现:如图,和都是等边三角形,点B、D、E在同一条直线上,连接AE.
①的度数为________;
②线段AE、BD之间的数量关系为________;
(2)拓展探究:如图②,和都是等腰直角三角形,,点B、D、E在同一条直线上,CM为中DE边上的高,连接AE.试求的度数及判断线段CM、AE、BM之间的数量关系,并说明理由;
(3)解决问题:如图,和都是等腰三角形,,点B、D、E在同一条直线上,请直接写出的度数.
内黄县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.答案:C
解析:A选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
B选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
C选项轴对称图形,符合题意.
D选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
2.答案:B
解析:可知a=1.25,从左起第一个不为0的数字前面有7个0,所以n=7,
∴0.000000125=1.25×10−7 .
故选:B.
2.答案:D
解析:A、,故不符合题意;
B 、,故不符合题意;
C、,故不符合题意;
D、,故符合题意;
故选:D.
4.答案:B
解析:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;
当长是3cm的边是腰时,底边长是:13﹣3﹣3=7(cm),而3+3<7,不满足三角形的三边关系.
故底边长:3cm.
故选:B.
5.答案:D
解析:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC=90,∠ACB=∠ECD,
所以用到的是两角及这两角的夹边对应相等即ASA这一方法.
故选D
6.答案:A
解析:A. ,不符合平方差公式,符合题意,
B. ,符合平方差公式,不符合题意,
C. ,符合平方差公式,不符合题意,
D. ,符合平方差公式,不符合题意,
故选:A.
7.答案:D
解析:∵关于x的二次三项式是一个完全平方式,
∴m-2=±1×5,
∴m=7或-3,故D正确.
故选:D.
8.答案:B
解析:作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC,
∴DE=CD=3,
∴△ABD的面积为×3×8=12,
故选:B.
9.答案:B
解析:∵四边形ABCD为长方形
∴∠BAE=∠DCE=90°,AB=CD,
在△EBA和△EDC中,
∵∠AEB=∠CED,∠BAE=∠DCE, AB=CD,
∴△EBA≌△EDC (AAS),
∴BE=DE,
∴△EBD为等腰三角形,
∴折叠后得到的图形是轴对称图形,
故A、C、D正确,
无法判断∠ABE和∠CBD是否相等,B选项错误;
故选B.
10.答案:D
解析:解:分式方程去分母得: ,即 ,
当,即 时,方程无解;
当x=-1时,-3k+1=-3k,此时k无解;
当x=0时,0=-3k,k=0,方程无解;
综上,k的值为0或 .
故答案为:D.
二. 填空题
11.答案: 9x2﹣12x+4
解析:原式=9x2﹣12x+4.
故答案为:9x2﹣12x+4.
12.答案:.
解析:,,,
∵,
∴,
故答案为:.
13.答案:x≠5
解析:解:∵分式有意义,
∴x-5≠0,即x≠5.
故答案为x≠5.
14.答案: 80°
解析:∵,
∴,,
设,
∴,
∴,
∵,
∴,
即,
解得:,
.
15.答案: 2或7
解析:∵正方形ABCD,
∴
是直角三角形,
为直角三角形,
点只能在上或者上,
当点在上时,如图,当时,有,
,
,
,
当点在上时,则当时,有,
,
故答案为:2或7.
三.解答题
16答案:
(1)﹣6a3b2+10a3b3
(2)15x2﹣4xy﹣4y2.
解析:
(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;
(2)(5x+2y)•(3x﹣2y)
=15x2﹣10xy+6xy﹣4y2)
=15x2﹣4xy﹣4y2.
17答案:
解析:
解:原式=
=
= .
18答案:
(1)(3,2)、(4,﹣3)、(1,﹣1);(2)6.5;(3)见解析.
解析:
(1)根据点关于y轴对称的性质得:;
(2)如图可知,
则;
(3)由题意可得y轴是线段的垂直平分线,则
因此
由三角形的三边关系得
故当三点共线时,最小,且最小值为
连接,与y轴的交点即为所求点P(如图所示).
19答案:
见解析
解析:
证明:连接BC,
在△ABC和△DCB中,
,
∴△ABC≌△DCB(SSS),
∴∠A=∠D,
在△AOB和△DOC中,
∴△AOB≌△DOC(AAS).
∴∠ABO=∠DCO .
20答案:
(1)∠EAC=54°;
(2).
解析:
小问1解析
∵∠EAD=∠EDA,
∴∠EAC+∠CAD=∠B+∠BAD,
∵AD平分∠BAC,
∴∠CAD=∠BAD.
∴∠EAC=∠B.
∵∠B=54°,
∴∠EAC=54°.
小问2解析
设∠CAD=2x,则∠E=5x,∠DAB=2x,
∵∠B=54°,
∴∠EDA=∠EAD=2x+54°.
∵∠EDA+∠EAD+∠E=180°,
∴2x+54°+2x+54°+5x=180°.
解得x=8°.
∴∠E=5x=40°.
21答案:
无解
解析:
解:去分母得:4+x2-1=x2-2x+1,
解得:x=-1,
经检验x=-1是增根,分式方程无解.
22答案:
(1)型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)增加购买型口罩的数量最多是422个
解析:
(1)设型口罩单价为元/个,则型口罩单价为元/个,
根据题意,得:,解方程,得,
经检验:是原方程的根,且符合题意,∴(元),
答:型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)设增加购买型口罩的数量是个,则增加购买型口罩数量是2个,
根据题意,得:,
解不等式,得:,
∵为正整数,∴正整数的最大值为422,
答:增加购买型口罩的数量最多是422个.
23答案:
(1)①;②;
(2),理由见解析;(3)
解析:
(1)①;②;
解法提示】和都是等边三角形,
,,,,
即,
在和中,
,,,
,
.
.
(2).
理由如下:和都是等腰直角三角形,
,,,,
,
又,
,
,
,,
,
,
是等腰直角三角形,CM为中DE边上的高,
,
,
;
(3)是等腰三角形,,
,
,
由(1)同理可得,
,
,
是等腰三角形,,
,
.
河南省安阳市内黄县2023-2024学年八年级上学期1月期末数学试题: 这是一份河南省安阳市内黄县2023-2024学年八年级上学期1月期末数学试题,共6页。
河南省安阳市文峰区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份河南省安阳市文峰区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共18页。试卷主要包含了选择题等内容,欢迎下载使用。
河南省安阳市汤阴县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份河南省安阳市汤阴县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共20页。试卷主要包含了选择题等内容,欢迎下载使用。