- 新教材2023版高中数学第三章空间向量与立体几何2空间向量与向量运算2.1从平面向量到空间向量2.2空间向量的运算第一课时空间向量的加减法空间向量的数乘运算课件北师大版选择性必修第一册 课件 1 次下载
- 新教材2023版高中数学第三章空间向量与立体几何2空间向量与向量运算2.1从平面向量到空间向量2.2空间向量的运算第二课时空间向量的数量积课件北师大版选择性必修第一册 课件 1 次下载
- 新教材2023版高中数学第三章空间向量与立体几何3空间向量基本定理及空间向量运算的坐标表示3.2第一课时空间向量运算的坐标表示空间向量平行共线和垂直的条件课件北师大版选择性必修第一册 课件 2 次下载
- 新教材2023版高中数学第三章空间向量与立体几何3空间向量基本定理及空间向量运算的坐标表示3.2第二课时空间向量长度与夹角的坐标表示课件北师大版选择性必修第一册 课件 1 次下载
- 新教材2023版高中数学第三章空间向量与立体几何4向量在立体几何中的应用4.1直线的方向向量与平面的法向量课件北师大版选择性必修第一册 课件 1 次下载
高中数学北师大版 (2019)选择性必修 第一册第三章 空间向量与立体几何3 空间向量基本定理及向量的直角坐标运算3.1 空间向量基本定理教课内容课件ppt
展开[教材要点]要点 空间向量基本定理1.定理:如果向量a,b,c是空间三个不共面的向量,p是空间任意一个向量,那么存在唯一的有序实数组(x,y,z),使得p=__________.2.基与基向量:如果三个向量a,b,c不共面,那么所有空间向量组成的集合就是{p|p=xa+yb+zc,x,y,z∈R},这个集合可看作由向量a,b,c生成的,我们把______________叫作空间的一组基,a,b,c都叫作基向量.空间任意三个不共面的向量都可以构成空间的一组基.
[基础自测]1.思考辨析(正确的画“√”,错误的画“×”)(1)只有两两垂直的三个向量才能作为空间向量的一组基.( )(2)对于三个不共面向量a1,a2,a3,不存在实数组{λ1,λ2,λ3}使0=λ1a1+λ2a2+λ3a3.( )(3)基选定后,空间的所有向量均可由基唯一表示.( )(4)空间的一个基是指一个向量组,是由三个不共面的空间向量构成的.( )
2.已知{a,b,c}是空间的一个基,则可以与向量p=a+b,q=a-b构成基的向量是( )A.a B.b C.a+2b D.a+2c
解析:A、B、C都与向量p、q共面,只有D与p、q不共面,故选D.
方法归纳1.如果向量中存在零向量,则不能作为基;如果存在一个向量可以用另外的向量线性表示,则不能构成基.2.假设a=λb+μc,运用空间向量基本定理,建立λ,μ的方程组,若有解,则共面,不能作为基;若无解,则不共面,能作为基.
跟踪训练1 [多选题]设x=a+b,y=b+c,z=c+a,且{a,b,c}是空间的一个基,给出下列向量组,其中可以作为空间一个基的向量组是( )A.{a,b,x} B.{x,y,z}C.{b,c,z} D.{x,y,a+b+c}
方法归纳用基中的基向量表示向量(即向量的分解),关键是结合图形,运用三角形法则、平行四边形法则及多边形法则,逐步把待求向量转化为基向量的“代数和”.
答案:3a+3b-5c
4.已知a=e1+e2+e3,b=e1+e2-e3,c=e1-e2+e3,d=e1+2e2+3e3,若d=αa+βb+λc,则α,β,λ的值分别为________.
数学选择性必修 第二册2.3 空间向量基本定理及坐标表示课文配套ppt课件: 这是一份数学选择性必修 第二册2.3 空间向量基本定理及坐标表示课文配套ppt课件,共25页。PPT课件主要包含了新知初探·课前预习,题型探究·课堂解透,答案B,答案C等内容,欢迎下载使用。
高中数学北师大版 (2019)选择性必修 第一册3.1 空间向量基本定理说课课件ppt: 这是一份高中数学北师大版 (2019)选择性必修 第一册3.1 空间向量基本定理说课课件ppt,共60页。PPT课件主要包含了目录索引,本节要点归纳等内容,欢迎下载使用。
高中数学北师大版 (2019)选择性必修 第一册3.1 空间向量基本定理图片ppt课件: 这是一份高中数学北师大版 (2019)选择性必修 第一册3.1 空间向量基本定理图片ppt课件,共27页。PPT课件主要包含了目录索引,探究点一基的判断,本节要点归纳等内容,欢迎下载使用。