- 新教材2023版高中数学第五章计数原理章末复习课课件北师大版选择性必修第一册 课件 1 次下载
- 新教材2023版高中数学第六章概率1随机事件的条件概率1.1条件概率的概念课件北师大版选择性必修第一册 课件 1 次下载
- 新教材2023版高中数学第六章概率1随机事件的条件概率1.3全概率公式课件北师大版选择性必修第一册 课件 1 次下载
- 新教材2023版高中数学第六章概率2离散型随机变量及其分布列2.1随机变量2.2离散型随机变量的分布列课件北师大版选择性必修第一册 课件 1 次下载
- 新教材2023版高中数学第六章概率3离散型随机变量的均值与方差3.1离散型随机变量的均值课件北师大版选择性必修第一册 课件 1 次下载
数学选择性必修 第一册第六章 概率1 随机事件的条件概率1.2 乘法公式与事件的独立性课文配套ppt课件
展开[教材要点]要点一 相互独立事件的概念如果事件A(或B)是否发生对事件B(或A)发生的概率________影响,这样的两个事件就叫作相互独立事件.要点二 相互独立事件的概率公式P(AB)=________.
P(A1)P(A2)…P(An)
[基础自测]1.思考辨析(正确的画“√”,错误的画“×”)(1) 对事件A和B,若P(B|A)=P(B),则事件A与B相互独立.( )(2)相互独立事件就是互斥事件.( )(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( )(4)P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(AB)表示事件A,B同时发生的概率.( )
2.坛中有黑、白两种颜色的球,从中进行有放回地摸球,用A1表示第一次摸得白球,A2表示第二次摸得白球,则A1与A2是( )A.相互独立事件 B.不相互独立事件C.互斥事件 D.对立事件
解析:由概率的相关概念得A1与A2是互不影响的两个事件,故是相互独立的事件.
4.在某道路A,B,C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条道路上匀速行驶,则三处都不停车的概率为________.
题型一 相互独立事件的判断例1 一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A={一个家庭中既有男孩又有女孩},B={一个家庭中最多有一个女孩}.对下述两种情形,讨论A与B的独立性: (1)家庭中有两个小孩;(2)家庭中有三个小孩.
方法归纳1.利用相互独立事件的定义(即P(AB)=P(A)·P(B))可以准确地判定两个事件是否相互独立,这是用定量计算方法判断,因此我们必须熟练掌握. 2.判别两个事件是否为相互独立事件也可以从定性的角度进行分析,也就是看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相互独立事件,有影响就不是相互独立事件.
跟踪训练1 从一副去除大、小王的扑克牌(52张)中任抽一张,设A=“抽得老K”,B=“抽得红牌”,判断事件A与B是否相互独立.
方法归纳1.求相互独立事件同时发生的概率的步骤:(1)首先确定各事件之间是相互独立的;(2)确定这些事件可以同时发生;(3)求出每个事件的概率,再求积.2.使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们能同时发生.
跟踪训练2 一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率.
题型三 事件的相互独立性与互斥性例3 红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.求:(1)红队中有且只有一名队员获胜的概率;(2)求红队至少两名队员获胜的概率.
方法归纳1.本题(2)中用到直接法和间接法.当遇到“至少”“至多”问题可以考虑间接法.2.求复杂事件的概率一般可分三步进行:(1)列出题中涉及的各个事件,并用适当的符号表示它们;(2)理清各事件之间的关系,恰当地用事件间的“并”“交”表示所求事件;(3)根据事件之间的关系准确地运用概率公式进行计算.
[课堂十分钟]1.下列事件中,A,B是独立事件的是( )A.一枚硬币掷两次,A={第一次为正面},B={第二次为反面}B.袋中有2白,2黑的小球,不放回地摸两球,A={第一次摸到白球},B={第二次摸到白球}C.掷一枚骰子,A={出现点数为奇数},B={出现点数为偶数}D.A={人能活到20岁},B={人能活到50岁}
解析:把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A是独立事件;B中是不放回地摸球,显然A事件与B事件不相互独立;对于C,其结果具有唯一性,A,B应为互斥事件;D是条件概率,事件B受事件A的影响.
2.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ) B. D.0.88
解析:由题意知,甲、乙都不被录取的概率为(1-0.6)×(1-0.7)=0.12,∴至少有1人被录取的概率为1-0.12=0.88.
4.明天上午李明要参加“青年文明号”活动,为了准时起床,他用甲乙两个闹钟叫醒自己,假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率为0.90,则两个闹钟至少有一个准时响的概率是________.
解析:设两个闹钟至少有一个准时响的事件为A,则P(A)=1-(1-0.80)(1-0.90)=1-0.20×0.10=0.98.
高中数学北师大版 (2019)选择性必修 第一册1.2 乘法公式与事件的独立性教课ppt课件: 这是一份高中数学北师大版 (2019)选择性必修 第一册1.2 乘法公式与事件的独立性教课ppt课件,共48页。PPT课件主要包含了目录索引,两个事件同时发生,过关自诊,相互独立事件,PAPB,①②③,本节要点归纳等内容,欢迎下载使用。
数学选择性必修 第一册1.2 乘法公式与事件的独立性作业ppt课件: 这是一份数学选择性必修 第一册1.2 乘法公式与事件的独立性作业ppt课件,共23页。PPT课件主要包含了ACD等内容,欢迎下载使用。
高中数学1.2 乘法公式与事件的独立性集体备课课件ppt: 这是一份高中数学1.2 乘法公式与事件的独立性集体备课课件ppt,共40页。PPT课件主要包含了必备知识·探新知,知识点1,乘法公式,同时发生,知识点2,事件的独立性,关键能力·攻重难,典例1,典例2,典例3等内容,欢迎下载使用。