|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023_2024学年新教材高中数学第八章立体几何初步午练17平面与平面垂直新人教A版必修第二册
    立即下载
    加入资料篮
    2023_2024学年新教材高中数学第八章立体几何初步午练17平面与平面垂直新人教A版必修第二册01
    2023_2024学年新教材高中数学第八章立体几何初步午练17平面与平面垂直新人教A版必修第二册02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023_2024学年新教材高中数学第八章立体几何初步午练17平面与平面垂直新人教A版必修第二册

    展开
    这是一份2023_2024学年新教材高中数学第八章立体几何初步午练17平面与平面垂直新人教A版必修第二册,共5页。

    午练17 平面与平面垂直1.如图所示,在三棱锥P-ABC中,平面PAB⊥平面ABC,PA=PB,AD=DB,则(  )             A.PD⊂平面ABCB.PD⊥平面ABCC.PD与平面ABC相交但不垂直D.PD∥平面ABC2.(多选题)已知直线l,m,平面α,β,l⊂α,m⊂β,则下列说法中正确的是(  )A.若l∥m,则必有α∥βB.若l⊥m,则必有α⊥βC.若l⊥β,则必有α⊥βD.若α∥β,则必有l∥β3.(多选题)(2023宾阳月考)如图,在四棱锥P-ABCD中,已知PA⊥底面ABCD,且底面ABCD为矩形,则下列结论中正确的是(  )A.平面PAB⊥平面PADB.平面PAB⊥平面PBCC.平面PBC⊥平面PCDD.平面PCD⊥平面PAD4.(多选题)如图,在四棱锥P-ABCD中,四边形ABCD为菱形,PA⊥平面ABCD,E是PD中点,下列叙述错误的是(  )A.CE∥平面PABB.CE⊥平面PADC.平面PBC⊥平面PABD.平面PBD⊥平面PAC5.如图,已知AB⊥平面BCD,BC⊥CD,则图中互相垂直的平面共有     对. 6.正四面体的侧面与底面所成的二面角的平面角的余弦值是. 7.如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形,△PAD为正三角形,其所在平面垂直于底面ABCD,G为AD的中点.求证:(1)BG⊥平面PAD;(2)AD⊥PB.8.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C为菱形,∠A1AC=60°,且AB⊥AA1,BC1⊥A1C.(1)证明:平面ABC⊥平面A1ACC1;(2)若AB=AC,求二面角A1-BC-A的余弦值.午练17 平面与平面垂直1.B ∵PA=PB,AD=DB,∴PD⊥AB.又平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊂平面PAB,∴PD⊥平面ABC.2.CD 对于A,平面α,β可能相交,所以选项A错误;对于B,平面α,β可能平行或斜交,所以选项B错误;对于C,因为l⊂α且l⊥β,则必有α⊥β,所以C正确;对于D,因为α∥β,则必有l∥β,所以D正确.故选CD.3.ABD 因为PA⊥底面ABCD,所以PA⊥AD,PA⊥CD.又底面ABCD为矩形,∴AD⊥AB,CD⊥AD.而AB∩PA=A,AD∩PA=A,∴AD⊥平面PAB,CD⊥平面PAD.∴平面PAD⊥平面PAB,平面PCD⊥平面PAD.又BC∥AD,∴BC⊥平面PAB,∴平面PBC⊥平面PAB.选项A,B,D正确.选项C错误,故选ABD.4.ABC 对于A,∵四边形ABCD是菱形,则CD∥AB.∵CD⊄平面PAB,AB⊂平面PAB,∴CD∥平面PAB.若CE∥平面PAB,∵CE∩CD=C,则平面PCD∥平面PAB,事实上,平面PCD与平面PAB相交,假设不成立,故A错误;对于B,过点C在平面ABCD内作CF⊥AD,垂足为点F.∵PA⊥平面ABCD,CF⊂平面ABCD,∴CF⊥PA.∵CF⊥AD,PA∩AD=A,∴CF⊥平面PAD.∵过C作平面PAD的垂线有且只有一条,∴CE与平面PAD不垂直,故B错误;对于C,如图,过点C在平面ABCD内作CM⊥AB,垂足为点M,∵PA⊥平面ABCD,CM⊂平面ABCD,则CM⊥PA,∵CM⊥AB,PA∩AB=A,则CM⊥平面PAB.若平面PBC⊥平面PAB,过点C在平面PBC内作CN⊥PB,垂足为点N.∵平面PBC⊥平面PAB,平面PAB∩平面PAB=PB,CN⊂平面PBC,∴CN⊥平面PAB.∵过点C作平面PAB的垂线有且只有一条,∴CM,CN重合,∴平面ABCD∩平面PBC=BC,∴CM,CN,CB重合,BC⊥AB.∵四边形ABCD是菱形,BC与AB不一定垂直,故C错误;对于D,∵四边形ABCD是菱形,∴BD⊥AC.∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA∩AC=A,∴BD⊥平面PAC,∵BD⊂平面PBD,∴平面PBD⊥平面PAC,故D正确.5.3 ∵AB⊥平面BCD,∴平面ABC⊥平面BCD,平面ABD⊥平面BCD.∵BC⊥CD,∴DC⊥平面ABC.∴平面ADC⊥平面ABC.∴共有3对互相垂直的平面.6. 如图所示,设正四面体ABCD的棱长为1,过点A作AO⊥底面BCD,垂足为O,连接DO并延长交BC于点E,连接AE,则E为BC的中点,故AE⊥BC,DE⊥BC,∴∠AEO为侧面ABC与底面BCD所成二面角的平面角.在Rt△AEO中,AE=,EO=ED=,∴cos∠AEO=.7.证明 (1)由题意知△PAD为正三角形,G是AD的中点,∴PG⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PG⊂平面PAD,∴PG⊥平面ABCD.又BG⊂平面ABCD,∴PG⊥BG.又∵四边形ABCD是菱形且∠DAB=60°,∴△ABD是正三角形,∴BG⊥AD.又AD∩PG=G,AD,PG⊂平面PAD,∴BG⊥平面PAD.(2)由(1)可知BG⊥AD,PG⊥AD,BG∩PG=G,BG,PG⊂平面PBG,∴AD⊥平面PBG.又PB⊂平面PBG,∴AD⊥PB.8.证明 (1)连接AC1,如图,四边形AA1C1C是菱形,所以AC1⊥CA1.又BC1⊥CA1,BC1∩AC1=C1,所以CA1⊥平面ABC1,故CA1⊥AB.又AA1⊥AB,CA1∩AA1=A1,所以AB⊥平面AA1C1C.又AB⊂平面ABC,所以平面ABC⊥平面A1ACC1.(2)在平面AA1C1C内过A1引直线A1O垂直于AC,O为垂足,在平面ABC内过O引直线OH垂直于BC,H为垂足,连接A1H.因为平面ABC⊥平面A1ACC1,平面ABC∩平面A1ACC1=AC,所以A1O⊥平面ABC,所以A1O⊥OH,A1O⊥BC.又OH⊥BC,A1O∩OH=O,所以BC⊥平面A1OH,故∠A1HO为二面角A1-BC-A的平面角.设AB=AC=2,由∠A1AC=60°可知O为AC的中点,所以A1O=.又AB=AC=2,AB⊥平面A1ACC1,AC⊂平面A1ACC1,所以AB⊥AC,所以OH=.所以A1H=.所以cos∠A1HO=,所以二面角A1-BC-A的余弦值为.
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023_2024学年新教材高中数学第八章立体几何初步午练17平面与平面垂直新人教A版必修第二册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map