2023-2024学年广东省广州市番禺区九年级(上)期末数学试卷
展开1.下列关于x的一元二次方程中,有两个不相等的实数根的方程是( )
A.x2+1=0B.x2+2x+1=0C.x2+2x+3=0D.x2+2x﹣3=0
2.将抛物线y=3x2向上平移2个单位,得到抛物线的解析式是( )
A.y=3x2﹣2B.y=3x2C.y=3(x+2)2D.y=3x2+2
3.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
4.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为( )
A.120(1﹣x)2=100B.100(1﹣x)2=120
C.100(1+x)2=120D.120(1+x)2=100
5.如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为( )
A.30°B.45°C.60°D.90°
6.用配方法将方程x2﹣8x﹣1=0变形为(x﹣m)2=17,则m的值是( )
A.﹣2B.4C.﹣4D.8
7.平面直角坐标系中,点A的坐标为(4,3),将线段OA绕原点O顺时针旋转90°得到OA′,则点A′的坐标是( )
A.(﹣4,3)B.(﹣3,4)C.(3,﹣4)D.(4,﹣3)
8.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,投掷此骰子,朝上面的点数为奇数的概率是( )
A.B.C.D.
9.如图,△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,若⊙I的半径为r,∠A=α,则(BF+CE﹣BC)的值和∠FDE的大小分别为( )
A.2r,90°﹣αB.0,90°﹣αC.2r,D.0,
10.抛物线y=ax2+bx+c(a,b,c是常数,c<0)经过(1,1),(m,0),(n,0)三点,且n≥3.在下列四个结论中:①a+b+c>0;②4ac﹣b2≤4a;③当n=3时,若点(2,t)在该抛物线上,则t<1;④若关于x的一元二次方程ax2+bx+c=x有两个相等的实数根,则,其正确结论的序号是( )
A.②③④B.①②④C.①②③D.①③④
二、填空题(共6小题,每小题3分,满分18分.)
11.一元二次方程x2﹣9=0的解是 .
12.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加 m.
13.关于x的方程5x2﹣mx﹣1=0的一根为1,则另一根为 .
14.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于 .
15.如图,转盘中四个扇形的面积都相等,任意转动这个转盘2次,当转盘停止转动时,指针2次都落在灰色区域的概率是 .
16.如图,在▱ABCD中,AB1,BC=2,AH⊥CD,垂足为H,AH.以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,G.若用扇形AEF围成一个圆锥的侧面,记这个圆锥底面圆的半径为r1;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r2,则r1﹣r2= .(结果保留根号)
三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演
17.解方程:(x﹣3)(x+1)=x﹣3.
18.已知二次函数y=x2+bx+c的图象经过A(0,2),B(1,﹣3)两点.
(1)求b和c的值;
(2)自变量x在什么范围内取值时,y随x的增大而减小?
19.如图,正方形网格中,每个小正方形的边长为1,在平面直角坐标系xOy内,四边形ABCD的四个顶点都在格点上,且B(﹣2,1),O为AD边的中点.若把四边形ABCD绕着点O顺时针旋转180°,试解答下列问题:
(1)画出四边形ABCD旋转后的图形;
(2)设点B旋转后的对应点为B',写出B'的坐标,并求B旋转过程中所经过的路径长(结果保留π).
20.已知关于x的方程x2+ax+a﹣2=0
(1)若该方程的一个根为1,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
21.如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.
(1)尺规作图:过点O作AC的垂线,垂足为E,交劣弧于点D,连接CD(保留作图痕迹,不写作法);
(2)在(1)所作的图形中,分别求OE和CD的长.
22.甲、乙两位同学相约打乒乓球.
(1)有款式完全相同的4个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C的概率;
(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?
23.如图,在△ABC中,∠ABC=90°,AB=12cm,BC=2AB,动点P从点A开始沿边AB向点B以2cm/s的速度移动,动点Q从点B开始沿边BC向点C以4cm/s的速度移动.如果P,Q两点分别从A,B两点同时出发,那么△BPQ的面积S随出发时间t而变化.
(1)求出S关于t的函数解析式,写出t的取值范围;
(2)当t取何值时,S最大?最大值是多少?
24.MN是⊙O上的一条不经过圆心的弦,MN=4,在劣弧MN和优弧MN上分别有点A,B(不与M,N重合),且,连接AM,BM.
(1)如图1,AB是直径,AB交MN于点C,∠ABM=30°,求∠CMO的度数;
(2)如图2,连接OM,AB,过点O作OD∥AB交MN于点D,求证:∠MOD+2∠DMO=90°;
(3)如图3,连接AN,BN,试猜想AM•MB+AN•NB的值是否为定值,若是,请求出这个值;若不是,请说明理由.
25.蔬菜大棚是一种具有出色保温性能的框架覆膜结构,它的出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD和抛物线的一部分AED构成(以下简记为“抛物线AED”),其中AB=4m,BC=6m,现取BC中点O,过点O作线段BC的垂直平分线OE交抛物线AED于点E,OE=7m,若以O点为原点,BC所在直线为x轴,OE为y轴建立如图①所示平面直角坐标系.请结合图形解答下列问题:
(1)求抛物线的解析式;
(2)如图②,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT,SMNR,其中L,R在抛物线AED上,若FL=NR=0.75m,求两个正方形装置的间距GM的长;
(3)如图③,在某一时刻,太阳光线透过A点恰好照射到C点,大棚截面的阴影为BK,此刻,过点K的太阳光线所在的直线与抛物线AED交于点P,求线段PK的长.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2024/1/18 8:39:08;用户:向功秋;邮箱:13580590948;学号:22795467
2023-2024学年广东省广州市番禺区七年级(上)期末数学试卷(含详细答案解析): 这是一份2023-2024学年广东省广州市番禺区七年级(上)期末数学试卷(含详细答案解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年广东省广州市番禺区八年级(上)期末数学试卷(含解析): 这是一份2023-2024学年广东省广州市番禺区八年级(上)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023-2024学年广东省广州市番禺区九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年广东省广州市番禺区九年级(上)期末数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。