终身会员
搜索
    上传资料 赚现金
    【全套精品专题】浙教版八年级上册 数学复习专题精讲 第08讲 角平分线、中垂线性质定理专题复习 -【专题突破】(解析版)
    立即下载
    加入资料篮
    【全套精品专题】浙教版八年级上册 数学复习专题精讲 第08讲 角平分线、中垂线性质定理专题复习 -【专题突破】(解析版)01
    【全套精品专题】浙教版八年级上册 数学复习专题精讲 第08讲 角平分线、中垂线性质定理专题复习 -【专题突破】(解析版)02
    【全套精品专题】浙教版八年级上册 数学复习专题精讲 第08讲 角平分线、中垂线性质定理专题复习 -【专题突破】(解析版)03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【全套精品专题】浙教版八年级上册 数学复习专题精讲 第08讲 角平分线、中垂线性质定理专题复习 -【专题突破】(解析版)

    展开
    这是一份【全套精品专题】浙教版八年级上册 数学复习专题精讲 第08讲 角平分线、中垂线性质定理专题复习 -【专题突破】(解析版),共28页。

    第8讲 角平分线、中垂线性质定理专题复习【角平分线】1.如图,△ABC的∠ABC和∠ACB的角平分线BE,CF相交于点O,∠A=60°,则∠BOC的大小为(  )A.110° B.120° C.130° D.150°【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数.【解答】解:∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC=,,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=60°,∴∠OBC+∠OCB=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故选:B.2.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=  .∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010=  .【分析】根据三角形的外角定理可知∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线定义得∠ACD=2∠A1CD,∠ABC=2∠A1BC,代入∠ACD=∠A+∠ABC中,与∠A1CD=∠A1+∠A1BC比较,可得∠A1==,由此得出一般规律.【解答】解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=. 故答案为:,.3.如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,则∠BOA= ,∠DAC= .【分析】根据三角形高线可得∠ADC=90°,利用三角形的内角和定理可求解∠DAC的度数;由三角形的内角和可求解∠B的度数,再根据角平分线的定义可求出∠BAO和∠ABO的度数,再利用三角形的内角和定理可求解.【解答】解:∵AD是△ABC的高线,∴∠ADC=90°,∵∠ADC+∠C+∠CAD=180°,∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠ABC+∠C+∠CAB=180°,∠C=70°,∠BAC=50°,∴∠ABC=180°﹣70°﹣50°=60°,∵AE,BF分别平分∠BAC,∠ABC,AE,BF相交于点O,∴∠BAO=∠BAC=25°,∠ABO=∠ABC=30°,∵∠ABO+∠BAO+∠AOB=180°,∴∠AOB=180°﹣25°﹣30°=125°.故答案为:∠AOB°=125°,∠CAD=20°4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为(  )A.3 B.4 C.3.5 D.2【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.判断出∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,判断出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.【解答】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE﹣DF=7﹣4=3.故选:A.5.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°.则∠FEC的度数为(  )A.10° B.20° C.30° D.60°【分析】根据AD∥BC,∠DAC+∠ACB=180°,再由∠DAC=120°,得出∠ACB=60°,由∠ACF=20°,得∠BCF的度数,根据CE平分∠BCF,得∠BCE=∠ECF,因为EF∥AD,则EF∥BC,∠FEC=∠BCE,即可得出∠FEC=∠FCE.【解答】解:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,∵∠ACF=20°,∴∠BCF的=40°,∵CE平分∠BCF,∴∠BCE=∠ECF=20°,∵EF∥AD,∴EF∥BC,∴∠FEC=∠BCE,∴∠FEC=∠FCE=20°.故选:B.6.如图,在△ABC中,∠B+∠C=100°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是(  )A.30° B.40° C.50° D.60°【分析】首先利用三角形的内角和求得∠BAC,进一步求得∠BAD,利用DE∥AB求得∠ADE=∠BAD得出答案即可.【解答】解:∵在△ABC中,∠B+∠C=100°,∴∠BAC=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:B.7.如图,点O是△ABC角平分线的交点,过点O作MN∥BC分别与AB,AC相交于点M,N,若AB=5,BC=8,CA=7,则△AMN的周长为 12 .【分析】根据角平分线性质和平行线的性质推出∠MOB=∠MBO,推出BM=OM,同理CN=ON,代入三角形周长公式求出即可.【解答】解:∵BO平分∠ABC,∴∠MBO=∠CBO,∵MN∥BC,∴∠MOB=∠CBO,∴∠MOB=∠MBO,∴OM=BM,同理CN=NO,∴BM+CN=MN,∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=5+7=12,故答案为:12.8.如图,Rt△ABC的两直角边AB、BC的长分别是9、12.其三条角平分线交于点O,将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于(  )A.1:1:1 B.1:2:3 C.3:4:5 D.2:3:4【分析】过O点作OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为D,E,F,根据角平分线的性质可知:OD=OE=OF,根据勾股定理可求解AC的长,再利用三角形的面积公式计算可求解.【解答】解:过O点作OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为D,E,F,∵△ABC的三条角平分线交于点O,∴OD=OE=OF,在Rt△ABC中,AB=9,BC=12,∴AC=,∴S△ABO:S△BCO:S△CAO=,故选:C.9.如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若BC=10,点D到AB的距离为4,则DB的长为(  )A.6 B.8 C.5 D.4【分析】过点D作DE⊥AB于E,根据角平分线的性质定理得到DC=DE=4,结合图形计算,得到答案.【解答】解:过点D作DE⊥AB于E,∵AD平分∠BAC,∠ACB=90°,DE⊥AB,∴DC=DE=4,∴BD=BC﹣DC=10﹣4=6,故选:A.10.如图,AB∥CD,∠CAB和∠ACD的平分线相交于H点,E为AC的中点,若EH=4.则AC=(  )A.8 B.7 C.6 D.9【分析】先根据平行线的性质得出∠BAC+∠ACD=18°,再由角平分线的性质可得出∠HAC+∠ACH=90°,根据三角形内角和定理即可得出,△AHC是直角三角形.所以根据直角三角形斜边上中线等于斜边的一半解答.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠BAC的平分线和∠ACD的平分线交于点H,∴∠HAC+∠ACH=(∠BAC+∠ACD)=90°,∴∠AHC=180°﹣90°=90°,∴△AHC是直角三角形.∵E为AC的中点,EH=4,∴AC=2EH=8.故选:A.11.到三角形的三条边距离相等的点(  )A.是三条角平分线的交点 B.是三条中线的交点 C.是三条高的交点 D.以上答案都不对【分析】根据三角形三条角平分线的性质可直接求解.【解答】解:∵三角形三条角平分线交于一点,这点到三角形的三边的距离相等.∴到三角形的三条边距离相等的点是三条角平分线的交点,故选:A.12.如图,点P是∠AOB内的一点,PC⊥OA于点C,PD⊥OB于点D,连接OP,CD.若PC=PD,则下列结论不一定成立的是(  )A.∠AOP=∠BOP B.∠OPC=∠OPD C.PO垂直平分CD D.PD=CD【分析】依据角平分线的性质、三角形内角和定理以及线段垂直平分线的性质,即可得出结论.【解答】解:∵PC⊥OA于点C,PD⊥OB于点D,PC=PD,∴点P在∠AOB的平分线上,即OP平分∠AOB,∴∠AOP=∠BOP,故A选项正确;∵∠PCO=∠PDO=90°,∠AOP=∠BOP,∴∠OPC=∠OPD,故B选项正确;∵∠OPC=∠OPD,PC⊥OA于点C,PD⊥OB于点D,∴OC=OD,∴点O在CD的垂直平分线上,又∵PC=PD,∴点P在CD的垂直平分线上,∴PO垂直平分CD,故C选项正确;∵∠PDC的度数不一定是60°,∴△CDP不一定是等边三角形,∴PD=CD不一定成立,故D选项错误;故选:D.13.如图,在△ABC中,∠A=90°,AB=3,AC=4,∠ABC与∠ACB的平分线交于点O,过点O作OD⊥AB于点D,则AD的长为 【分析】过O点作OE⊥AC于E,OF⊥BC于F,如图,根据角平分线的性质得到OE=OF=OD,在利用勾股定理计算出BC=5,接着利用面积法求出OD=1,然后证明四边形ADOE为正方形,从而得到AD的长.【解答】解:过O点作OE⊥AC于E,OF⊥BC于F,如图,∵BO平分∠ABC,CO平分∠ACB,∴OD=OF,OE=OF,即OE=OF=OD,∵∠A=90°,AB=3,AC=4,∴BC==5,∵S△OAB+S△OAC+S△OBC=S△ABC,∴×3×OD+×4×OE+×5×OF=×4×3,∴OD=1,∵∠DAE=∠ADO=∠AEO=90°,∴四边形ADOE为矩形,∵OD=OE,∴四边形ADOE为正方形,∴AD=OD=1.故答案为:1.14.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB垂直,若AD=8,则点P到BC的距离是 【分析】过点P作PE⊥BC于E,根据角平分线的性质得到PE=AP,PE=PD,根据AD=8计算,得到答案.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BP平分∠ABC,PA⊥AB,PE⊥BC,∴PE=AP,同理可得:PE=PD,∴PE=AD,∵AD=8,∴PE=4,即点P到BC的距离是4,故答案为:4.15.如图,Rt△ABC中,∠C=90°,AC=BC=6,AD为∠BAC的平分线,DE⊥AB垂足为E,则△DBE的周长等于 【分析】根据勾股定理求出AB,根据线段垂直平分线的性质得到DE=DC,进而求出BE,根据三角形的周长公式计算,得到答案.【解答】解:在Rt△ABC中,∠C=90°,AC=BC=6,由勾股定理得:AB==6,∵AD为∠BAC的平分线,DE⊥AB,∠C=90°,∴DE=DC,∴AE=AC=6,∴BE=AB﹣AE=6﹣6,∴△DBE的周长=BD+DE+BE=BD+DC+BE=BC+BE=6﹣6+6=6,故答案为:6.16.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为(  )A.3cm2 B.4cm2 C.4.5cm2 D.5cm2【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△PBC=S△ABC,代入求出即可.【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×9cm2=4.5cm2,故选:C.17.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°﹣∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则,其中正确的结论有 ①③④ (填序号).【分析】①根据∠ABC和∠ACB的平分线相交于点G可得出∠EBG=∠CBG,∠BCG=∠FCG,再由EF∥BC可知∠CBG=∠EGB,∠BCG=∠CGF,故可得出BE=EG,GF=CF,由此可得出结论;②先根据角平分线的性质得出∠GBC+∠GCB=(∠ABC+∠ACB),再由三角形内角和定理即可得出结论;③根据三角形内心的性质即可得出结论;④连接AG,根据三角形的面积公式即可得出结论.【解答】解:①∵∠ABC和∠ACB的平分线相交于点G,∴∠EBG=∠CBG,∠BCG=∠FCG.∵EF∥BC,∴∠CBG=∠EGB,∠BCG=∠CGF,∴∠EBG=∠EGB,∠FCG=∠CGF,∴BE=EG,GF=CF,∴EF=EG+GF=BE+CF,故本小题正确;②∵∠ABC和∠ACB的平分线相交于点G,∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(180°﹣∠A)=90°+∠A,故本小题错误;③∵∠ABC和∠ACB的平分线相交于点G,∴点G是△ABC的内心,∴点G到△ABC各边的距离相等,故本小题正确;④连接AG,∵点G是△ABC的内心,GD=m,AE+AF=n,∴S△AEF=AE•GD+AF•GD=(AE+AF)•GD=nm,故本小题正确.故答案为①③④.18.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,已知CD=4.则AC的长为  4+4 .【分析】依据角平分线的性质可证明DC=DE,接下来证明△BDE为等腰直角三角形,从而得到DE=EB=4,然后依据勾股定理可求得BD的长,然后由AC=BC=CD+DB求解即可.【解答】解:∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,∴DE=CD,∵CD=4,∴DE=4,又∵AC=BC,∴∠B=∠BAC,又∵∠C=90°,∴∠B=45°,∴∠BDE=90°﹣45°=45°,∴BE=DE=4,在等腰直角三角形BDE中,由勾股定理得,BD==4,∴AC=BC=CD+BD=4+4,故答案为:4+4.19.如图,已知△ABC,∠BAC=80°,∠ABC=40°,若BE平分∠ABC,CE平分外角∠ACD,连接AE,则∠AEB的度数为 30° .【分析】过E点作EF⊥AB于F,EH⊥AC于H,EP⊥BD于P,如图,利用角平分线的性质得到EF=EP,∠ABE=∠ABC=×40°=40°,EH=EP,则EF=EH,再根据角平分线的性质定理的逆定理可判断AE平分∠FAC,则可计算出∠FAE=50°,然后根据三角形外角性质可计算出∠AEB的度数.【解答】解:过E点作EF⊥AB于F,EH⊥AC于H,EP⊥BD于P,如图,∵BE平分∠ABC,∴EF=EP,∠ABE=∠ABC=×40°=40°,∵CE平分外角∠ACD,∴EH=EP,∴EF=EH,∴AE平分∠FAC,∵∠BAC=80°,∴∠FAC=180°﹣80°=100°,∴∠FAE=∠FAC=50°,∵∠FAE=∠ABE+∠AEB,∴∠AEB=50°﹣20°=30°.故答案为30°.20.如图,已知∠ABC、∠EAC的角平分线BP、AP相交于点P,PM⊥BE,PN⊥BF,垂足分别为M、N.现有四个结论:①CP平分∠ACF;②∠BPC=∠BAC;③∠APC=90°﹣∠ABC;④S△APM+S△CPN>S△APC.其中结论正确的为  ①②③ .(填写结论的编号)【分析】①作PD⊥AC于D.根据角平分线性质得到PM=PN,PM=PD,得到PM=PN=PD,于是得到点P在∠ACF的角平分线上,故①正确;②根据三角形的判定和性质得到AD=AM,∠APM=∠APD,CD=CN,∠NPC=∠DPC,于是得到∠APC=MPN,故②正确;③根据四边形的内角和得到∠ABC+90°+∠MPN+90°=360°,求得∠ABC+∠MPN=180°,于是得到∠APC=90°﹣∠ABC,故③正确;④根据角平分线定义得到∠ACF=∠ABC+∠BAC,∠PCN=∠ACF=∠BPC+∠ABC,得到∠BPC=∠BAC,根据全等三角形的性质得到S△APM+S△CPN=S△APC.故④不正确.【解答】解:①作PD⊥AC于D.∵PB平分∠ABC,PA平分∠EAC,PM⊥BE,PN⊥BF,∴PM=PN,PM=PD,∴PM=PN=PD,∴点P在∠ACF的角平分线上(到角的两边距离相等的点在角的平分线上),故①正确;②∵PB平分∠ABC,CP平分∠ACF,∴∠ABC=2∠PBC,∠ACF=2∠PCF,∵∠ACF=∠ABC+∠BAC,∠PCF=∠PBF+∠BPC,∴∠BAC=2∠BPC,∴∠BPC=∠BAC,故②正确;③∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,∴∠APC=90°﹣∠ABC,故③正确;④∵S△APD=S△APM,S△CPD=S△CPN,∴S△APM+S△CPN=S△APC,故④不正确.综上所述,①②③正确.故答案为:①②③.21.如图,已知∠ABC、∠ACB的平分线相交于点O,EF过点O且EF∥BC.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠BOC=130°,∠1:∠2=3:2,求∠ABC、∠ACB的度数.【分析】(1)由角平分线的定义可求解∠OBC=25°,∠OCB=30°,再利用三角形的内角和定理可求解;(2)由已知条件易求∠1,∠2的度数,根据平行线的性质即可得∠OBC,∠OCB的度数,利用角平分线的定义可求解.【解答】解:(1)∵∠ABC和∠ACB的平分线BO与CO相交于点O,所以∠EBO=∠OBC=,∠FCO=∠OCB=,又∠ABC=50°,∠ACB=60°,∴∠OBC=25°,∠OCB=30°,∴∠BOC=180°﹣∠OBC﹣∠OCB=125°;(2)∵∠BOC=130°,∴∠1+∠2=50°,∵∠1:∠2=3:2,∴,,∵EF∥BC,∴∠OBC=∠1=30°,∠OCB=∠2=20°,∵∠ABC和∠ACB的平分线BO与CO相交于点O,∴∠ABC=60°,∠ACB=40°.22.如图1,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)若AB=4,AC=5,求△AEF的周长.(2)过点O作OH⊥BC于点H,连接OA,如图2.当∠BAC=60°时,试探究OH与OA的数量关系,并说明理由.【分析】(1)证明∠EOB=∠CBO得到EB=EO,同理可得FO=FC,然后利用等线段代换得到△AEF的周长=AB+AC;(2)过O点作OG⊥AE于G,OQ⊥AC于Q,如图2,根据角平分线的性质得到OH=OG,OH=OQ,则OG=OQ,根据角平分线的性质定理的逆定理可判断OA平分∠BAC,所以∠GAO=30°,利用含30度的直角三角形三边的关系得到OG=OA,从而得到OH=OA.【解答】解:(1)∵OB平分∠ABC,∴∠CBO=∠ABO,∵EF∥BC,∴∠EOB=∠CBO,∴△EBO为等腰三角形,∴EB=EO,同理可得FO=FC,∴△AEF的周长=AE+EF+AF=AE+EO+FO+AF=AB+AC=4+5=9;(2)OH=OA.理由如下:过O点作OG⊥AE于G,OQ⊥AC于Q,如图2,∵OB平分∠ABC,OH⊥BC,OG⊥AB,∴OH=OG,∵OC平分∠ACB,∴OH=OQ,∴OG=OQ,∴OA平分∠BAC,∴∠GAO=∠BAC=30°,∴OG=OA,∴OH=OA.23.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,BD=4,∠B=30°,S△ACD=7,求AC的长.【分析】过点D作DF⊥AC于F,根据直角三角形的性质求出DE,根据角平分线的性质求出DF,根据三角形的面积公式计算,得到答案.【解答】解:过点D作DF⊥AC于F,在Rt△BDE中,BD=4,∠B=30°,∴DE=BD=2,∵AD是△ABC中∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE=2,∵S△ACD=7,∴×AC×2=7,解得:AC=7.24.在△ABC中,AD是角平分线,∠B<∠C,(1)如图(1),AE是高,∠B=50°,∠C=70°,求∠DAE的度数;(2)如图(2),点E在AD上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;(3)如图(3),点E在AD的延长线上.EF⊥BC于F,试探究∠DEF与∠B、∠C的关系是 ∠DEF=(∠C﹣∠B) (直接写出结论,不需证明).【分析】(1)依据角平分线的定义以及垂线的定义,即可得到∠CAD=∠BAC,∠CAE=90°﹣∠C,进而得出∠DAE=(∠C﹣∠B),由此即可解决问题.(2)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C﹣∠B).(3)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C﹣∠B)不变.【解答】解:(1)如图1,∵AD平分∠BAC,∴∠CAD=∠BAC,∵AE⊥BC,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE=∠BAC﹣(90°﹣∠C)=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=∠C﹣∠B=(∠C﹣∠B),∵∠B=50°,∠C=70°,∴∠DAE=(70°﹣50°)=10°.(2)结论:∠DEF=(∠C﹣∠B).理由:如图2,过A作AG⊥BC于G,∵EF⊥BC,∴AG∥EF,∴∠DAG=∠DEF,由(1)可得,∠DAG=(∠C﹣∠B),∴∠DEF=(∠C﹣∠B).(3)仍成立.如图3,过A作AG⊥BC于G,∵EF⊥BC,∴AG∥EF,∴∠DAG=∠DEF,由(1)可得,∠DAG=(∠C﹣∠B),∴∠DEF=(∠C﹣∠B),故答案为∠DEF=(∠C﹣∠B).【线段垂直平分线】1.如图,在△ABC中,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,连接AE、AF,若△AEF的周长为2,则BC的长是(  )A.2 B.3 C.4 D.无法确定【分析】根据线段的垂直平分线的性质得到EA=EB,FA=FC,根据三角形的周长公式即可求出BC.【解答】解:∵AB的垂直平分线交BC于点E,∴EA=EB,∵AC的垂直平分线交BC于点F.∴FA=FC,∴BC=BE+EF+FC=AE+EF+AF=△AEF的周长=2.故选:A.2.如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是(  )A.2 B.4 C.6 D.8【分析】根据线段的垂直平分线的性质得到EB=EA=4,结合图形计算,得到答案.【解答】解:∵DE是AB的垂直平分线,AE=4,∴EB=EA=4,∴BC=EB+EC=4+2=6,故选:C.3.如图,在△ABC中,BC边上两点D、E分别在AB、AC的垂直平分线上,若BC=24,则△ADE的周长为(  )A.22 B.23 C.24 D.25【分析】根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算,得到答案.【解答】解:∵点D、E分别在AB、AC的垂直平分线上,∴DA=DB,EA=EC,∴△ADE的周长=DA+DE+EA=DB+DE+EC=BC=24,故选:C.4.如图,已知∠B=20°,∠C=25°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于(  )A.80° B.90° C.100° D.105°【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质得到PA=PB,QA=QC,根据等腰三角形的性质得到∠PAB=∠B,∠QAC=∠C,结合图形计算,得到答案.【解答】解:∵∠B=20°,∠C=25°,∴∠BAC=180°﹣∠B﹣∠C=135°,∵MP和QN分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠PAB=∠B=20°,∠QAC=∠C=25°,∴∠PAQ=∠BAC﹣∠PAB﹣∠QAC=135°﹣20°﹣25°=90°,故选:B.5.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为(  )cmA.3 B.4 C.7 D.11【分析】根据线段垂直平分线的性质得到NA=NB,根据三角形的周长公式计算,得到答案.【解答】解:∵MN是线段AB的垂直平分线,∴NA=NB,∵△BCN的周长是7cm,∴BC+CN+BN=7(cm),∴BC+CN+NA=7(cm),即BC+AC=7(cm),∵AC=4cm,∴BC=3(cm),故选:A.6.元旦联欢会上,同学们玩抢凳子游戏,在与A、B、C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A、B、C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的(  )A.三边中线的交点 B.三条角平分线的交点 C.三边上高的交点 D.三边垂直平分线的交点【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边垂直平分线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最合适.故选:D.7.如图,在Rt△ABC中,∠BAC=90°,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若DE=3,AE=5,则△ACE的周长为  16 .【分析】根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.【解答】解:∵DE是AB的垂直平分线,∴EA=EB=5,DE⊥AB,∵DE=3,∴AD==4,∴AB=2AD=8,∵∠BAC=∠BDE=90°,∴DE∥AC,∴BE=CE=5,∴AC=2DE=6,BC=10,∴△ACE的周长=AC+EC+EA=AC+EC+EB=AC+BC=AC+BC=16,故答案为:16.8.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠FAC=68°,则∠B的度数为  68° .【分析】根据角平分线的定义得出∠CAD=∠BAD,根据线段垂直平分线的性质得出FA=FD,根据等腰三角形的性质得到∠FDA=∠FAD,根据三角形的外角性质得出∠FDA=∠B+∠BAD,代入计算即可.【解答】解:∵AD平分∠BAC,∴∠CAD=∠BAD,设∠CAD=∠BAD=x,∵EF垂直平分AD,∴FA=FD,∴∠FDA=∠FAD,∵∠FAC=68°,∴∠FAD=∠FAC+∠CAD=68°+x,∵∠FDA=∠B+∠BAD=∠B+x,∴68°+x=∠B+x,∴∠B=68°,故答案为:68°.9.如图,△ABC中,已知∠C=90°,DE是AB的垂直平分线,若∠DAC:∠DAB=1:2,那么∠BAC= 54 度.【分析】设∠DAB=2x,则∠DAC=x,根据线段垂直平分线的性质得到DA=DB,则∠B=∠DAB=2x,再利用三角形内角和得到90°+2x+2x+x=180°,解方程求出x,然后计算3x即可.【解答】解:设∠DAB=2x,则∠DAC=x,∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB=2x,∵∠C+∠B+∠CAB=180°,∴90°+2x+2x+x=180°,解得x=18°,∴∠BAC=x+2x=3x=54°.故答案为:54.10.如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为  5 cm2.【分析】延长AP交BC于E,根据全等三角形的性质得到S△ABP=S△BEP,AP=PE,得到△APC和△CPE等底同高,求得S△APC=S△PCE,设△ACE的面积为m,于是得到结论.【解答】解:延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,在△ABP与△BEP中,,∴△ABP≌△BEP(ASA),∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,设△ACE的面积为m,∴S△ABE=S△ABC+S△ACE=10+m,∴S△PBC=S△ABE﹣S△ACE=5(cm2).故答案为:5.11.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.【分析】根据线段垂直平分线得出AF=DF,推出∠FAD=∠FDA,根据角平分线得出∠BAD=∠CAD,根据三角形外角性质推出即可.【解答】证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B.12.在△ABC中,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,(1)如图(1),连接AM、AN,求∠MAN的度数;(2)如图(2),如果AB=AC,求证:BM=MN=NC.【分析】(1)由在△ABC中,∠BAC=130°,可求得∠C+∠B的度数,然后由AB、AC的垂直平分线分别交BC于点M、N,根据线段垂直平分线的性质,可得BM=AM,CN=AN,即可得∠CAN=∠C,∠BAM=∠B,继而求得∠CAN+∠BAM的度数,则可求得答案;(2)先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.【解答】(1)解:∵∠BAC=120°,∴∠B+∠C=60°,由(1)证得BM=AM,CN=AN,∴∠C=∠CAN,∠B=∠BAM,∴∠CAN+∠BAM=∠C+∠B=60°,∴∠MAN=120°﹣60°=60°;(2)证明:∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC.
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【全套精品专题】浙教版八年级上册 数学复习专题精讲 第08讲 角平分线、中垂线性质定理专题复习 -【专题突破】(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map