![【全套精品专题】浙教版八年级上册 数学复习专题精讲 第19讲 一次函数与几何图形面积考点分类探究-【专题突破】(解析版)第1页](http://img-preview.51jiaoxi.com/2/3/15245984/0-1705577485026/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【全套精品专题】浙教版八年级上册 数学复习专题精讲 第19讲 一次函数与几何图形面积考点分类探究-【专题突破】(解析版)第2页](http://img-preview.51jiaoxi.com/2/3/15245984/0-1705577485069/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【全套精品专题】浙教版八年级上册 数学复习专题精讲 第19讲 一次函数与几何图形面积考点分类探究-【专题突破】(解析版)第3页](http://img-preview.51jiaoxi.com/2/3/15245984/0-1705577485086/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:【期末复习专题精讲】浙教版数学八年级上册 期末复习专题练(解析版)
- 【全套精品专题】浙教版八年级上册 数学复习专题精讲 第17讲 《函数基本概念及其图形的简单应用》考点分类复习(解析版) 试卷 0 次下载
- 【全套精品专题】浙教版八年级上册 数学复习专题精讲 第18讲 一次函数考点分类总复习-【专题突破】(解析版) 试卷 0 次下载
- 【全套精品专题】浙教版八年级上册 数学复习专题精讲 第20讲 一次函数与特殊图形动点问题压轴题探究-【专题突破】(解析版) 试卷 0 次下载
- 【全套精品专题】浙教版八年级上册 数学复习专题精讲 第21讲 八上易错选择填空题各地考卷选题专练-【专题突破】(解析版) 试卷 1 次下载
- 【全套精品专题】浙教版八年级上册 数学复习专题精讲专题2.2 最值模型之将军饮马 专项讲练(解析版) 试卷 3 次下载
【全套精品专题】浙教版八年级上册 数学复习专题精讲 第19讲 一次函数与几何图形面积考点分类探究-【专题突破】(解析版)
展开
这是一份【全套精品专题】浙教版八年级上册 数学复习专题精讲 第19讲 一次函数与几何图形面积考点分类探究-【专题突破】(解析版),共27页。
第19讲 一次函数与几何图形面积考点分类探究考点一 一次函数图象与坐标轴围成图形的面积【知识点睛】一次函数y=kx+b(k≠0)与坐标轴交点规律求两直线交点坐标方法:联立两直线解析式,得二元一次方程组,解方程组得交点坐标;求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高;类型一 一条直线与坐标轴围成的三角形面积解题步骤:①求出直线与x轴、y轴的交点坐标,从而得出直线与坐标轴围成的直角三角形的两条直角边长; ②利用三角形面积公式求出三角形的面积【类题训练】1.已知一次函数图象经过A(﹣4,﹣10)和B(3,4)两点,与x轴的交于点C,与y轴的交于点D.(1)求该一次函数解析式;(2)点C坐标为 ,点D坐标为 ;(3)画出该一次函数图象,并求该直线和坐标轴围成的图形面积.【分析】(1)用待定系数法求直线AB的解析式;(2)令y=0求得点C的坐标,令x=0求得点D的坐标;(3)利用已知的点A和点B画出一次函数的图象,然后利用求得的点C和点D求出OC和OD的长度,最后求得直线和坐标轴围成的图形面积.【解答】解:(1)设一次函数的解析式为y=kx+b(k≠0),则,解得:,∴一次函数的解析式为y=2x﹣2.(2)当x=0时,y=﹣2,当y=0时,x=1,∴C(1,0),D(0,﹣2).故答案为:(1,0),(0,﹣2).(3)由点A和点B,可以画出一次函数的图象,如下如所示,∵C(1,0),D(0,﹣2),∴OC=1,OD=2,∴S△OCD==1,∴一次函数与坐标轴围成的图形的面积为1.2.在平面直角坐标系中,一条直线经过A(﹣1,5),与B(3,﹣3)两点.(1)求这条直线与坐标轴围成的图形的面积.(2)若这条直线与y=﹣x+1交于点C,求点C的坐标.【分析】(1)根据待定系数法求得直线的解析式,进一步求出直线与x轴和y轴的交点坐标,然后根据三角形面积公式求解;(2)联立方程,解方程即可.【解答】(1)解:设直线解析式为y=kx+b(k≠0),将A(﹣1,5),与B(3,﹣3)两点代入得,解得,∴直线解析式为y=﹣2x+3,将x=0代入得y=3,∴与y轴交于点(0,3),将y=0代入得x=,∴与x轴交于点(,0),∴S=×3×=.(2)解得,∴点C的坐标是(2,﹣1).变式.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是 .【分析】先根据一次函数y=kx+b(k≠0)图象过点(2,0)可知b=﹣2k,用k表示出函数图象与y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【解答】解:∵一次函数y=kx+b(k≠0)图象过点(2,0),∴2k+b=0,b=﹣2k,∴y=kx﹣2k,令x=0,则y=﹣2k,∵函数图象与两坐标轴围成的三角形面积为1,∴×2×|﹣2k|=1,即|2k|=1,解得:k=±,则函数的解析式是y=x﹣1或y=﹣x+1.故答案为y=x﹣1或y=﹣x+1. 类型二 两条直线与坐标轴围成的三角形面积解题标准:在平面直角坐标系内求三角形的面积,通常以坐标轴上的边为底,高就是底所对的顶点到这条边的距离【类题训练】1.如图,若直线y=﹣2x+1与直线y=kx+4交于点B(﹣1,m),且两条直线与y轴分别交于点C、点A;那么△ABC的面积为 .【分析】根据B点在直线y=﹣2x+1上,且横坐标为﹣1,求出B点的坐标,再根据直线y=kx+4过B点,将(﹣1,3)代入直线y=kx+4解析式,即可求出答案,根据已知得出B点的坐标,再根据直线y=﹣2x+1和直线y=x+4求得与y轴交点A和C点的坐标,再根据三角形的面积公式得出S△ABC.【解答】解:∵B点在直线y=﹣2x+1上,且横坐标为﹣1,∴y=﹣2×(﹣1)+1=3,即B点的坐标为(﹣1,3)又直线y=kx+4过B点,将(﹣1,3)代入直线y=kx+4得:3=﹣k+4,解得k=1;∴直线AB的解析式为y=x+4,∴直线AB与y轴交点A的坐标为(0,4),∵直线y=﹣2x+1与y轴交点C的坐标为(0,1),∴AC=4﹣1=3,∴S△ABC=AC•|xB|=×3×1=.故答案为.2.如图,直线l1:y=﹣2x+b与直线l2:y=kx﹣2相交于点P(1,﹣1),直线l1交y轴于点A,直线交y轴于点B,则△PAB的面积为 .【分析】利用一次函数y=kx+b(k,b为常数,k≠0)可得直线l1与直线l2:与y轴交点,然后可求出△PAB的面积.【解答】解:∵直线l1:y=﹣2x+b与直线l2:y=kx﹣2相交于点P(1,﹣1),∴﹣1=﹣2×1+b,解得:b=1,∴A点坐标为(0,1),∵直线l2:y=kx﹣2交y轴于B,∴B(0,﹣2),∴AB=3,∴△PAB的面积为:3×1=,故答案为:.变式.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为( )A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4【分析】首先求出直线y=kx﹣4(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.【解答】解:直线y=kx﹣4(k<0)与两坐标轴的交点坐标为(0,﹣4)(,0),∵直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,∴4×(﹣)×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选:B.类型三 三条直线围成的三角形面积解题标准:在平面直角坐标系内求三角形的面积,通常以坐标轴上的边为底,高就是底所对的顶点到这条边的距离【类题训练】1.如图,已知点A(2,4),B(﹣2,2),C(4,0),求△ABC的面积.【分析】先利用待定系数法求直线AB的解析式,再确定直线AB与x轴的交点D的坐标,然后根据三角形面积公式和以S△ABC=S△ACD﹣S△BDC进行计算.【解答】解:设直线AB的解析式为y=kx+b,把A(2,4)、B(﹣2,2)代入得,解得.所以直线AB的解析式为y=x+3,当y=0时,y=x+3=0,解得x=﹣6,则D点坐标为(﹣6,0),所以S△ABC=S△ACD﹣S△BDC=×(4+6)×4﹣×(4+6)×2=10.2.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D(0,﹣6)在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线CD交AB于点E.(1)求点A、B、C的坐标;(2)求△ADE的面积;(3)y轴上是否存在一点P,使得S△PAD=S△ADE,若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)利用一次函数图象上点的坐标特征可求出点A,B的坐标,在Rt△AOB中,利用勾股定理可求出AB的长度,由折叠的性质可得出AC=AB,结合OC=OA+AC可得出OC的长度,进而可得出点C的坐标;(2)根据点E为直线AB与直线CD的交点,联立两直线解析式可求出点E坐标,再由△ADE和△ADB组成△BDE,得△ADE的面积=△BDE的面积-△ABD的面积,即可求出△ADE的面积;(3)假设存在,设点P的坐标为(0,m),则DP=|m+6|,利用三角形的面积公式可得出关于m的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)当x=0时,y=﹣x+4=4,∴点B的坐标为(0,4);当y=0时,﹣x+4=0,解得:x=3,∴点A的坐标为(3,0).在Rt△AOB中,OA=3,OB=4,∴AB==5.由折叠的性质,可知:∠BDA=∠CDA,∠D=∠C,AC=AB=5,∴OC=OA+AC=8,∴点C的坐标为(8,0).(2)∵C(8,0),D(0,﹣6),∴直线CD的解析式为:y=x-6,∵点E为直线AB与直线CD的交点.由求得点E坐标为,∴S△ADE=S△BDE﹣S△ABD=BD•|xE|﹣BD•|xA|=9(3)假设存在,设点P的坐标为(0,m),则DP=|m+6|.∵S△PAD=S△ADE,即DP•OA=×OD•OA,∴|m+6|=3,解得:m=﹣3或m=﹣9,∴假设成立,即y轴上存在一点P(0,﹣3)或(0,﹣9),使得S△PAD=S△ADE.3.如图,已知:直线AB:分别与x轴、y轴交于点A、B,直线CD:y=x+b分别与x轴、y轴交于点C、D,直线AB与CD相交于点P,S△ABD=2.求:(1)b的值和点P的坐标;(2)求△ADP的面积.【分析】(1)首先根据分别与x轴、y轴交于点A、B可求得A、B坐标,然后根据S△ABD=2可求得D点坐标,代入直线CD:y=x+b可求得b,直线AB与CD相交于点P,联立两方程可求得P点坐标.(2)可把S△ADP的面积分解为S△ABD+S△BDP,而S△BDP=|xP|,即可求得.【解答】解:(1)∵直线AB:分别与x轴、y轴交于点A、B,令y=0则x=﹣2,A(﹣2,0),令x=0则y=1∴B(0,1),又∵S△ABD=2∴|BD|•|OA|=2而|OA|=2∴|BD|=2,又B(0,1),∴D(0,﹣1)∴b=﹣1;∵直线AB与CD相交于点P,联立两方程得:,解得x=4,y=3,∴P(4,3);(2)由图象坐标可知:S△ADP=S△ABD+S△BDP=2+|xP|=6或S△ADP=S△PAC+S△DAC=|yP|)=×3×(1+3)=6.4.已知直线m经过两点(1,6)、(﹣3,﹣2),它和x轴、y轴的交点式B、A,直线n过点(2,﹣2),且与y轴交点的纵坐标是﹣3,它和x轴、y轴的交点是D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD的面积;(3)若直线AB与DC交于点E,求△BCE的面积.【分析】(1)利用待定系数法可分别求出直线AB的解析式为y=2x+4;直线CD的解析式为y=x﹣3;然后利用两点确定一直线画函数图象;(2)利用坐标轴上点的坐标特征确定A点坐标为(0,4)=B点坐标为(﹣2,0)、D点坐标为(6,0),然后根据三角形面积公式和四边形ABCD的面积=S△ABD+S△CBD进行计算;(3)根据一次函数的交点问题通过解方程组得到E点坐标,然后利用△BCE的面积=S△EBD﹣S△CBD进行计算.【解答】解:(1)设直线AB的解析式为y=kx+b,把(1,6)、(﹣3,﹣2)代入得,解得.所以直线AB的解析式为y=2x+4;设直线CD的解析式为y=mx+n,把(2,﹣2)、(0,﹣3)代入得,解得,所以直线CD的解析式为y=x﹣3;如图所示;(2)把x=0代入y=2x+4得y=4,则A点坐标为(0,4);把y=0代入y=2x+4得2x+4=0,解得x=﹣2,则B点坐标为(﹣2,0);把y=0代入y=x﹣3得x﹣3=0,解得x=6,则D点坐标为(6,0),所以四边形ABCD的面积=S△ABD+S△CBD=×(6+2)×4+×(6+2)×3=28;(3)解方程组得,所以E点坐标为(﹣,﹣),所以△BCE的面积=S△EBD﹣S△CBD=×(6+2)×﹣×(6+2)×3=.变式.已知点A(2,4),B(﹣2,2),C(x,2),若△ABC的面积为10,求x的值.【分析】审题知B、C纵坐标相等,所以BC是一条平行于x轴的直线,所以A到BC的距离为2,而且B、C两点之间的距离可用两点的横坐标之差的绝对值表示,即x+2的绝对值.已知三角形的面积为10,依此列出方程求解即可.【解答】解:由B、C纵坐标相等,所以BC是一条平行于x轴的直线,所以A到BC的距离为4﹣2=2,BC=|x﹣(﹣2)|=|x+2|,因为△ABC的面积为10,所以×2×|x+2|=10,|x+2|=10,x+2=10,或x+2=﹣10,解得:x=8,或x=﹣12.考点二 一次函数图象与几何图形动点面积【知识点睛】此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息对函数图象的分析重点抓住以下两点: ①分清坐标系的x轴、y轴的具体意义 ②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。【类题训练】1.如图,边长为2的正方形ABCD中,点P从点A出发沿路线A→B→C→D匀速运动至点D停止,已知点P的速度为1,运动时间为t,以P、A、B为顶点的三角形面积为S,则S与t之间的函数图象可能是( )A. B. C. D.【分析】分点P在AB上运动、点P在BC上运动、点P在CD上运动三种情况,逐次求出函数表达式,即可求解.【解答】解:①当点P在AB上运动时(0≤t≤2),∵点P、A、B在一条直线上,故S=0;②当点P在BC上运动时(2<t≤4),见题干图,S=AB×PB=×2×(t﹣2)=t﹣2,为一次函数,当t=4时,S=2;③当点P在CD上运动时(4<t≤6),同理可得:S=×AB×BC=×2×2=2,为常数;故选:C.2.如图①,在矩形ABCD中,AB>AD,对角线AC,BD相交于点O,动点P由点A出发,沿A→B→C运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AB边的长为( )A.3 B.4 C.5 D.6【分析】当点P到达点B时,△AOP的面积为6,此时△AOP的高为BC,则6=×AB×(BC),解得AB•BC=24,而AB+BC=10,即可求解.【解答】解:从图象看,当点P到达点B时,△AOP的面积为6,此时△AOP的高为BC,∴△AOP的面积=×AB×(BC)=6,解得AB•BC=24①,而从图②看,AB+BC=10②,联立①②并解得,故选:D.3.如图1,在矩形MNPO中,动点R从点N出发,沿N→P→O→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPO的周长是( )A.16 B.18 C.20 D.22【分析】由函数图象知,PN=4,PO=10﹣4=6,即可求解.【解答】解:由函数图象知,PN=4,PO=10﹣4=6,故矩形MNPO的周长=2(PN+PO)=2×(4+6)=20,故选:C.4.如图1,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒一个单位长度的速度,按A﹣B﹣C﹣D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图2所示,当P运动到BC中点时,△APD的面积为( )A.4 B.5 C.6 D.7【分析】首先结合图形和函数图象判断出CD的长和AD的长,进而可得AB的长,从而可得E点坐标,然后再计算出当5<t≤10时直线解析式,然后再代入t的值计算出s即可.【解答】解:根据题意得:四边形ABCD是梯形,当点P从C运动到D处需要2秒,则CD=2,△ADP面积为4,则AD=4,根据图象可得当点P运动到B点时,△ADP面积为10,则AB=5,则运动时间为5秒,∴E(5,10),设当5<t≤10时,函数解析式为s=kt+b,∴,解得:,∴当5<t≤10时,函数解析式为s=﹣t+16,当P运动到BC中点时时间t=7.5,则s=7,故选:D.5.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发,沿折线B﹣A﹣D﹣C方向以1.5单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则下列线段长度错误的是( )A.AB=6 B.BC=8 C.AD=2 D.CD=12【分析】A.当t=4时,点P到达A处,即AB=4×1.5=6,即可求解;B.过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,则DE=CE=AB=6,即可求解;C.当S=60时,点P到达点D处,则S=CD•BC=×12×BC=60,即可求解;D.AD===2,即可求解.【解答】解:A.当t=4时,点P到达A处,即AB=4×1.5=6,故A正确,不符合题意;B.过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=AB=6,∴CD=12,故B正确,不符合题意;C.当S=60时,点P到达点D处,则S=CD•BC=×12×BC=60,解得BC=10,故C错误,符合题意;D.AD===2,故D正确,不符合题意.故选:B.考点三 一次函数图象与网格图形的面积【知识点睛】解题步骤:①确定题中所给正方形的个数,算成平分后一半图形的面积②根据直线所过另一点,将图形的其中一半加上个别正方形,凑成直角三角形③由凑成的直角三角形的面积求出直线另一点的坐标④根据待定系数法求出直线解析式【类题训练】1.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为( )A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x【分析】设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.【解答】解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴S△AOB=4+1=5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(﹣,3),设直线方程为y=kx,则3=﹣k,k=﹣,∴直线l解析式为y=﹣x,故选:D.2.如图,在直角坐标系中有一个缺失了右上格的九宫格,每个小正方形的边长为1,点A的坐标为(2,3).要过点A画一条直线AB,将此封闭图形分割成面积相等的两部分,则直线AB解析式是 .【分析】设直线AB与x轴交于B(x,0),则直线AB左边梯形的面积等于整个图形面积的一半,即为4,由梯形面积公式求x,得出直线AB的解析式.【解答】解:设直线AB与x轴交于B(x,0),依题意,得×(x+2)×3=4,解得x=,∴B(,0),设直线AB:y=kx+b,则,解得,∴直线AB:y=x﹣.故答案为:y=x﹣.3.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线l将这10个正方形分成面积相等的两部分,则该直线的解析式为 .【分析】根据题意即可画出相应的辅助线,从而可以求得相应的函数解析式,本题得以解决.【解答】解:将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD的面积只要等于5即可,∴设BC=4﹣x,则[(4﹣x)+3]×3÷2=5,解得,x=,∴点B的坐标为(,3),设过点A和点B的直线的解析式为y=kx+b,,解得,,即过点A和点B的直线的解析式为y=,故答案为:y=.4.在平面直角坐标系中,点P在直线y=x+b的图象上,且点P在第二象限,PA⊥x轴于点A,PB⊥y轴于点B,四边形OAPB是面积为25的正方形,则直线y=x+b的函数表达式是 .【分析】根据正方形的性质得到PA=PB=5,求得P(﹣5,5),根据点P在直线y=x+b的图象上,解方程得到b=10,于是得到结论.【解答】解:如图,∵四边形OAPB是面积为25的正方形,PA⊥x轴于点A,PB⊥y轴于点B,∴PA=PB=5,∵点P在第二象限,∴P(﹣5,5),∵点P在直线y=x+b的图象上,∴5=﹣5+b,∴b=10,∴直线y=x+b的函数表达式是y=x+10,故答案为:y=x+10.【综合题训练】1.如图,在平面直角坐标系中,点A(6,0)、点B(0,6),过原点的直线l交直线AB于点P.(1)求∠OAB的度数和△AOB的面积;(2)当直线l的解析式为y=2x时,求点P的坐标;(3)当时,求直线l的解析式.【分析】(1)可得出OA=OB,∠AOB=90°,从而求得结果;(2)求出l的解析式,与y=2x联立方程组,解得结果;(3)分为点P在BA上和BA的延长线上,当点P在AB上时,作PC⊥OA于C,作PD⊥OB于D,可推出PD=2PC,代入y=﹣x+6求得;当点P在BA的延长线上时,作OE⊥AB于E,作PF⊥OA于F,求得AP=BP=6,进而求得结果.【解答】解:(1)∵A(6,0),B(0,6),∴OA=OB=6,∵∠AOB=90°,∴∠OAB=∠OBA===45°,S△AOB===18;(2)设直线AB的解析式是:y=kx+b,∴,∴,∴y=﹣x+6,∴,∴,∴P(2,4);(3)如图1,设点P(a,b),当点P在AB上时,作PC⊥OA于C,作PD⊥OB于D,∵,∴=,∵OA=OB,∴=,∴PD=2PC,∴a=2b,又∵b=﹣a+6,∴a=4,b=2,∴P(4,2),∴直线l的解析式是:y=x,如图2,当点P在BA的延长线上时,作OE⊥AB于E,作PF⊥OA于F,∴∠AFP=∠AOB=90°,∵,∴=,∴AP=BP,∴AP=AB,∵∠OAB=∠PAF,∴△APF≌△ABO(AAS),∴AF=OA=6,PF=OB=6,∴OF=12,∴P(12,﹣6),∴直线l的解析式是:y=﹣;综上所述:直线l的解析式是:y=或y=﹣x.2.如图,已知直线y=﹣x+3与x轴、y轴分别相交于点A、B,将△AOB沿直线CD折叠,使点A与点B重合.折痕CD与x轴交于点C,与AB交于点D.(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度,并求出此时直线BC的表达式;(3)过点B作直线BP与x轴交于点P,且使OP=OA,求△ABP的面积.【分析】(1)令x=0和y=0即可求出点A,B的坐标;(2)连接BC,设OC=x,则AC=BC=4﹣x,在Rt△BOC中,利用勾股定理求出x,再利用待定系数法求出直线BC的解析式即可;(3)先求出点P的坐标,根据三角形的面积公式即可求解.【解答】解:(1)令y=0,则x=4;令x=0,则y=3,故点A的坐标为(4,0),点B的坐标为(0,3).故答案为:(4,0),(0,3);(2)连接BC,设OC=x,∵直线CD垂直平分线段AB,∴AC=CB=4﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,32+x2=(4﹣x)2,解得x=,∴OC=,∴C(,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x+3;(3)如图,∵点A的坐标为(4,0),∴OA=4,∵OP=OA,∴OP=2,∴点P的坐标为(2,0),P′(﹣2,0),∴AP=2,AP′=6,∴S△ABP=AP•OB=×2×3=3;S△ABP′=AP′•OB=×6×3=9.综上:△ABP的面积为3或9.3.如图,直线l:y=﹣x+3与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P为直线l上不与点A、B重合的一个动点.(1)点A坐标为 ,点B坐标为 ,线段OM的长为 ;(2)当△BOP的面积是6时,求点P的坐标;(3)在y轴上是否存在点Q,使得以O、P、Q为顶点的三角形与△OMP全等,若存在,请直接写出所有符合条件的点P的坐标,否则,说明理由.【分析】(1)先求得点A、B的坐标,可求得OA、OB、AB的长,利用面积法即可求得OM的长;(2)先画图,确定△BOP面积可以BO为底,P到y轴距离为高求得P到y轴距离,再分类讨论求得答案;(3)分△OMP≌△PQO与△OMP≌△OQP两种情况讨论,结合图形分析即可求解.【解答】解:(1)对于直线y=﹣x+3,令x=0,则y=3,令y=0,则﹣x+3=0,解得:x=,∴点A、B的坐标分别是(,0),(0,3),∴OA=,OB=3,∴AB===,∵S△OAB=OA•OB=AB•OM,∴OM==.故答案为:(,0),(0,3),;(2)如图,设点P(x,﹣x+3),∴S△BOP=OB•x=×3x=6,∴x=4,∴点P的横坐标为4或﹣4,∴横坐标为4时,﹣x+3=﹣,∴横坐标为﹣4时,纵坐标为:﹣x+3=,∴点P坐标为(4,﹣)或(﹣4,);(3)存在,理由如下:①当△OMP≌△PQO时,如图2和图3,由(1)得OM=,∴PQ=OM=,即P点横坐标为﹣或 ,当P点横坐标为﹣时,纵坐标为:﹣+3=,∴P(﹣,),当P点横坐标为 时,纵坐标为:﹣+3=,∴P( ),此时点P的坐标为(﹣),( );②当△OMP≌△OQP时,如图4和图5,∴OQ=OM=,即点P、点Q纵坐标为﹣或 ,由﹣x+3=−,解得:x=;由﹣x+3=,解得:x=;此时点P的坐标为( ),( );综上所述,符合条件的点P的坐标为(﹣)或( )或( )或( );4.如图,直线y=kx+b与x轴、y轴分别交于点A(4,0)、B(0,4),点P在x轴上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.(1)求k、b的值;(2)若点O′恰好落在直线AB上,求△OBP的面积;(3)将线段PB绕点P顺时针旋转45°得到线段PC,直线PC与直线AB的交点为Q,在点P的运动过程中,是否存在某一位置,使得△PBQ为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)用待定系数法直接求出;(2)分P在x轴的正半轴和负半轴:①当P在x轴的正半轴时,求OP=O'P=AO'=4﹣4,根据三角形面积公式可得结论;②当P在x轴的负半轴时,同理可得结论;(3)分4种情况:分别以P、B、Q三点所成的角为顶角讨论:①当BQ=QP时,如图2,P与O重合,②当BP=PQ时,如图3,③当PB=PQ时,如图4,此时Q与C重合④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,根据图形和等腰三角形的性质可计算对应点P的坐标.【解答】解:(1)∵点A(4,0)、B(0,4)在直线y=kx+b上,∴,解得:k=﹣1,b=4;(2)存在两种情况:①如图1,当P在x轴的正半轴上时,点O′恰好落在直线AB上,则OP=O'P,∠BO'P=∠BOP=90°,∵OB=OA=4,∴△AOB是等腰直角三角形,∴AB=4,∠OAB=45°,由折叠得:∠OBP=∠O'BP,BP=BP,∴△OBP≌△O'BP(AAS),∴O'B=OB=4,∴AO'=4﹣4,Rt△PO'A中,O'P=AO'=4﹣4=OP,∴S△BOP=OB•OP==8﹣8;②如图所示:当P在x轴的负半轴时,由折叠得:∠PO'B=∠POB=90°,O'B=OB=4,∵∠BAO=45°,∴PO'=PO=AO'=4+4,∴S△BOP=OB•OP==8+8;(3)分4种情况:①当BQ=QP时,如图2,P与O重合,此时点P的坐标为(0,0);②当BP=PQ时,如图3,∵∠BPC=45°,∴∠PQB=∠PBQ=22.5°,∵∠OAB=45°=∠PBQ+∠APB,∴∠APB=22.5°,∴∠ABP=∠APB,∴AP=AB=4,∴OP=4+4,∴P(4+4,0);③当PB=PQ时,如图4,此时Q与C重合,∵∠BPC=45°,∴∠PBA=∠PCB=67.5°,△PCA中,∠APC=22.5°,∴∠APB=45+22.5°=67.5°,∴∠ABP=∠APB,∴AB=AP=4,∴OP=4﹣4,∴P(4﹣4,0);④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,∴此时P(﹣4,0);综上,点P的坐标是(0,0)或(4+4,0)或(4﹣4,0)或(﹣4,0).对于直线y=kx+b(k≠0)与x轴交点坐标(,0)故:当k、b同号时,直线交于x轴负半轴;当k、b异号时,直线交于x轴正半轴与y轴交点坐标(0,b)故:当b>0时,直线交于y轴正半轴;当b<0时,直线交于y轴负半轴
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)