![新教材2024高考数学二轮专题复习分册一新高考命题四特性精准定位四应用性__融入素养特色鲜明第1页](http://img-preview.51jiaoxi.com/3/3/15258960/0-1705738627923/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:新教材2024高考数学二轮专题复习试题(40份)
新教材2024高考数学二轮专题复习分册一新高考命题四特性精准定位四应用性__融入素养特色鲜明
展开这是一份新教材2024高考数学二轮专题复习分册一新高考命题四特性精准定位四应用性__融入素养特色鲜明,共2页。试卷主要包含了5-148等内容,欢迎下载使用。
(1)将实际问题建立数学模型进行求解,理清建模过程和数据处理,利用数据说话.
(2)应用数学知识解决相关数学问题时,注重分析问题,构建条件与结论的最短(最佳)解题链,坚持条件与结论的和谐相融.
数学的实际应用回归分析在实际生活中的应用
重温高考
1.[2020·全国卷Ⅰ]某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi)(i=1,2,…,20)得到下面的散点图:
由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A.y=a+bxB.y=a+bx2
C.y=a+bexD.y=a+blnx
[试解]
素养清单[逻辑推理][数学抽象]
数学的实际应用立体几何在实际生活中的应用
重温高考
2.[2022·新高考Ⅰ卷]南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180.0km2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(≈2.65)( )
A.1.0×109m3B.1.2×109m3C.1.4×109m3D.1.6×109m3
[试解]
素养清单[数学建模][数学运算]
数学的实际应用概率与统计在实际生活中的应用
重温高考
3.[2020·新高考Ⅰ卷]某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A.62% B.56%C.46% D.42%
[试解]
素养清单[逻辑推理][数学运算]
数学的实际应用相互独立事件、互斥事件在实际中的应用
重温高考
4.[2023·新课标Ⅱ卷]在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次;三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).
A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2
C.采用三次传输方案,若发送1,则译码为1的概率为+(1-β)3
D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率
[试解]
素养清单[逻辑推理][数学运算]
精准定位四 应用性——融入素养 特色鲜明
1.解析:本题考查回归方程及一次函数、二次函数、指数型函数、对数型函数的图象,观察散点图可知,散点图用光滑曲线连接起来比较接近对数型函数的图象.故选D.
答案:D
2.解析:由棱台的体积公式,得增加的水量约为×(157.5-148.5)×(140×106+180×106+)=3×106×(140+180+60)≈3×106×(140+180+60×2.65)≈1.4×109(m3).故选C.
答案:C
3.解析:不妨设该校学生总人数为100,既喜欢足球又喜欢游泳的学生人数为x,则100×96%=100×60%-x+100×82%,所以x=46,所以既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.选C.
答案:C
4.解析:由题意,发0收1的概率为α,发0收0的概率为1-α;发1收0的概率为β,发1收1的概率为1-β.对于A,发1收1的概率为1-β,发0收0的概率为1-α,发1收1的概率为1-β,所以所求概率为(1-α)(1-β)2,故A选项正确.对于B,相当于发了1,1,1,收到1,0,1,则概率为(1-β)β(1-β)=β(1-β)2,故B选项正确.对于C,相当于发了1,1,1,收到1,1,0或1,0,1或0,1,1或1,1,1,则概率为(1-β)3=3β(1-β)2+(1-β)3,故C不正确.对于D,发送0,采用三次传输方案译码为0,相当于发0,0,0,收到0,0,1或0,1,0或1,0,0或0,0,0,则此方案的概率P1=(1-α)3=3α(1-α)2+(1-α)3;发送0,采用单次传输方案译码为0的概率P2=1-α,当0<α<0.5时,P1-P2=3α(1-α)2+(1-α)3-(1-α)=α(1-α)(1-2α)>0,故D选项正确.综上,选ABD.
答案:ABD
相关试卷
这是一份新教材2024高考数学二轮专题复习分册一新高考命题四特性精准定位一基础性__遵循考纲难易适中,共11页。
这是一份新教材2024高考数学二轮专题复习分册一新高考命题四特性精准定位三创新性__立足求变变中出新,共5页。试卷主要包含了解析等内容,欢迎下载使用。
这是一份新教材2024高考数学二轮专题复习分册一新高考命题四特性精准定位二综合性__着眼题型凸显能力,共3页。试卷主要包含了1)<f=0,即0等内容,欢迎下载使用。