终身会员
搜索
    上传资料 赚现金
    21.1 一元二次方程-人教版数学九年级上册同步精品讲义
    立即下载
    加入资料篮
    21.1 一元二次方程-人教版数学九年级上册同步精品讲义01
    21.1 一元二次方程-人教版数学九年级上册同步精品讲义02
    21.1 一元二次方程-人教版数学九年级上册同步精品讲义03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程学案及答案

    展开
    这是一份人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程学案及答案,共21页。学案主要包含了即学即练1,即学即练2,即学即练3,即学即练4,即学即练5,即学即练6等内容,欢迎下载使用。


    知识精讲
    知识点01 一元二次方程的概念
    1、对“一元”、“二次”的理解
    ①一元:方程只有一个未知数;
    ②二次:未知数的最高次为2;
    2、一元二次方程满足的三个条件
    ①方程必须是整式方程(不得含有分式,即未知数不在分母位置上,例如不是整式方程);
    ②只含有一个未知数;
    ③未知数的最高次为2;
    知识点02 一元二次方程的一般形式
    1、一元二次方程的一般形式及要求
    ①一元二次方程的一般式:任何一个关于x的一元二次方程,经过整理化简,都可以写成
    的形式,叫做一元二次方程的一般形式;
    ②一元二次方程的一般形式的要求:
    等式左边为关于x的二次整式,等式右边等于0;
    2、一元二次方程的项和系数
    3、一元二次方程的特殊形式:
    【注意】
    (1)将一元二次方程化为一般形式,如果二次项系数为负数,一般将方程两边同乘以-1,将二次项系数a化为正数;
    (2)找一元二次方程各项的系数时,首先要将一元二次方程化为一般形式,再找二次项系数、一次项系数和常数项,并且要带上前面的符号;
    (3)若方程中没有出现一次项 或常数项,则该项的系数为0;
    知识点03 一元二次方程的根
    一元二次方程的根满足两个条件:
    (1)根就是未知数的值;
    (2)使方程两边相等;
    用法:已知方程的根,则将方程的根代入未知数,等式成立。
    应用:
    1.判断根的方法:分别将未知数的值代入原方程,看左右两边是否相等,相等则是,否则不是.
    2.根据方程根的定义,将方程的根代入原方程求解,从而确定某些字母的取值或求出给定代数式的值.
    知识点04 由a、b、c的等式得出一元二次方程的根
    (1)首先观察下表:
    (2)由上表,根据a、b、c的等式,得出方程的根
    【注意】
    ①由a、b、c的等式,判断方程的根时,要将a、b、c放在等号的一侧;
    ②根据一元二次方程的一般式可知,c的系数为1,故一定要将c的系数化为 ;
    ③根据一元二次方程的一般式可知,一次项bx可知,b的系数即为方程的根x;
    能力拓展
    考法01 一元二次方程的判断
    【例题1】下列方程中,是关于x的一元二次方程的是( )
    A.ax2+bx+c=0(a,b,c为常数)B.x2﹣x﹣2=0
    C.﹣2=0D.x2+2x=x2﹣1
    【答案】B
    【解析】
    A.若a=0,则该方程不是一元二次方程,故A选项错误,
    B.符合一元二次方程的定义,故B选项正确,
    C.属于分式方程,不符合一元二次方程的定义,故C选项错误,
    D.整理后方程为:2x+1=0,不符合一元二次方程的定义,故D选项错误,
    故选B.
    【即学即练1】下列哪个方程是一元二次方程( )
    A.2x+y=1B.x2+1=2xyC.x2+=3D.x2=2x﹣3
    【答案】D
    【解析】
    A. 2x+y=1是二元一次方程,故不正确;
    B. x2+1=2xy是二元二次方程,故不正确;
    C. x2+=3是分式方程,故不正确;
    D. x2=2x-3是一元二次方程,故正确;
    故选:D
    【即学即练2】下列方程中,关于x的一元二次方程是( )
    A.B.C.=0D.
    【答案】A
    【解析】
    A、根据一元二次方程的定义A满足条件,故A正确,
    B、分母中有未知数,不是整式方程,不选B,
    C、二次项系数为a是否为0,不确定,不选C,
    D、没有二次项,不是一元二次方程,不选D.
    故选择:A.
    考法02 一元二次方程的定义
    【例题2】若关于x的方程是一元二次方程,则( )
    A.B.C.D.
    【答案】A
    【解析】
    由一元二次方程的定义可得a-2≠0,可解出a≠2.故答案为A
    【即学即练1】已知:方程(a+9)x|a|-7+8x+1=0是一元二次方程,求a的值.
    【答案】9
    【解析】
    ∵方程(a+9)x|a|-7+8x+1=0是一元二次方程,
    ∴解得
    故a=9.
    【即学即练2】已知方程.
    (1)当取何值时是一元二次方程?
    (2)当取何值时是一元一次方程?
    【答案】(1)(2)或-1
    【解析】
    (1) 是一元二次方程,
    m+1≠0,m2+1=2,
    m=1,
    当m=1时,方程是一元二次方程;
    (2)是一元一次方程,
    ①m+1≠0,m2+1=1,
    m=0;
    ②m+1=0,解得m=−1;
    当m=0或m=−1时,方程是一元一次方程.
    考法03 一元二次方程的一般式
    【例题3】填空:
    (1)一元二次方程的一般式是 __________.
    (2)把一元二次方程化成一般式是__________.
    (3)把一元二次方程化成一般式是__________.
    (4)一元二次方程的二次项的系数是__________,一次项的系数是__________, 常数项是__________.
    (5)一元二次方程的二次项的系数是_______,一次项的系数是_______,常数项是_______.
    (6)当__________ 时,关于的方程是一元二次方程.
    【答案】
    (1)ax2+bx+c=0(a≠0);(2),(3);(4)4,0,-3;(5)3,-5,-5;(6)≠3.
    【解析】
    解:(1)一元二次方程的一般式是:ax2+bx+c=0(a≠0);
    (2)把一元二次方程化成一般式是:;
    (3)把一元二次方程化成一般式是:.
    (4)一元二次方程的二次项的系数是:4,一次项的系数是:0, 常数项是:-3;
    (5)一元二次方程的二次项的系数是:3,一次项的系数是:-5,常数项是:-5.
    (6)当m≠3时,关于的方程是一元二次方程.
    【即学即练1】下列方程中哪些是一元二次方程?将一元二次方程写成一般式的形式,并指出它的二次项系数、一次项系数和常数项
    (1);
    (2);
    (3);
    (4);
    (5);
    (6)
    【答案】(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)见解析;(6)见解析.
    【解析】
    解:(1)未知数最高次数是1,故不是一元二次方程;
    (2)是一元二次方程,一般形式为:,二次项系数是:1,一次项系数是:0,,常数项是:-4;
    (3)是分式方程,故不是一元二次方程;
    (4)将方程左右展开后可得:4x+8=0,未知数最高次数是1,故不是一元二次方程;
    (5)方程中,当a=0时不是一元二次方程,故不是一元二次方程;
    (6)是一元二次方程,一般形式为:,二次项系数是:2,一次项系数是:-5,,常数项是:7.
    【即学即练2】方程的二次项系数、一次项系数、常数项分别为( )
    A.,,B.,,C.,,D.,,
    【答案】D
    【解析】
    解:可变形为:,
    ∴二次项系数为:2,一次项系数为:,常数项为:,
    故选D.
    【即学即练3】把一元二次方程x(x+1)=3x+2化为一般形式,正确的是( )
    A.x2+4x+3=0B.x2﹣2x+2=0C.x2﹣3x﹣1=0D.x2﹣2x﹣2=0
    【答案】D
    【解析】
    一元二次方程的一般形式为
    x(x+1)=3x+2
    x2+x﹣3x﹣2=0,
    x2﹣2x﹣2=0
    故选D.
    考法04 一元二次方程的根
    【例题4】已知一元二次方程x2+kx-3=0有一个根为1,则k的值为( )
    A.−2B.2C.−4D.4
    【答案】B
    【解析】
    解:把x=1代入方程得1+k-3=0,
    解得k=2.
    故选B.
    【即学即练1】如果关于x的一元二次方程有一个解是0,那么m的值是( )
    A.﹣3B.3C.±3D.0或﹣3
    【答案】A
    【解析】
    把x=0代入方程中;
    得: ;
    解得或;
    当时,原方程二次项系数,舍去,
    故选A
    【即学即练2】若n()是关于x的方程的根,则m+n的值为( )
    A.1B.2C.-1D.-2
    【答案】D
    【解析】
    解:∵是关于x的方程的根,
    ∴,即n(n+m+2)=0,

    ∴n+m+2=0,即m+n=-2,
    故选D.
    【即学即练3】已知下面三个关于的一元二次方程,,恰好有一个相同的实数根,则的值为( )
    A.0B.1C.3D.不确定
    【答案】A
    【解析】
    把x=a代入ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0得:a•a2+ba+c=0,ba2+ca+a=0,ca2+a•a+b=0,相加得:(a+b+c)a2+(b+c+a)a+(a+b+c)=0,
    ∴(a+b+c)(a2+a+1)=0.
    ∵a2+a+1=(a+)2+>0,
    ∴a+b+c=0.
    故选A.
    【即学即练4】关于的方程必有一个根为( )
    A.x=1B.x=-1C.x=2D.x=-2
    【答案】A
    【解析】
    解:A、当是,,所以方程必有一个根为1,所以A选项正确;
    B、当时,,所以当时,方程有一个根为,所以B选项错误;
    C、当时,,所以当时,方程有一个根为,所以C选项错误;
    D、当时,,所以当时,方程有一个根为,所以D选项错误.故选:A
    【即学即练5】已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为( )
    A.1B.﹣1C.0D.﹣2
    【答案】A
    【解析】
    解:∵关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,
    ∴b2﹣ab+b=0,
    ∵﹣b≠0,
    ∴b≠0,
    方程两边同时除以b,得b﹣a+1=0,
    ∴a﹣b=1.
    故选A.
    【即学即练6】两个关于的一元二次方程和,其中,,是常数,且,如果是方程的一个根,那么下列各数中,一定是方程的根的是( )
    A.2020B.C.-2020D.
    【答案】C
    【解析】
    ∵,,a+c=0
    ∴,
    ∵ax2+bx+c=0 和cx2+bx+a=0,
    ∴,,
    ∴,,
    ∵是方程的一个根,
    ∴是方程的一个根,
    ∴是方程的一个根,
    即是方程的一个根
    故选:C.
    考法05 由a、b、c的等式得出方程的根
    【例题5】若方程中,满足和,则方程的根是( )
    A.B.C.D.无法确定
    【答案】A
    【解析】
    解:∵,
    把代入得:,
    即方程的一个解是,
    把代入得:,
    即方程的一个解是;
    故选:A.
    【即学即练1】已知一元二次方程ax2+bx+c=0(a≠0).
    (1)若a+b+c=0,则此方程必有一根为 ;
    (2)若a-b+c=0,则此方程必有一根为 ;
    (3)若4a-2b+c=0,则此方程必有一根为 .
    【答案】(1)1 (2)-1 (3)-2
    【解析】
    解:对于一元二次方程ax2+bx+c=0(a≠0),
    (1)当a+b+c=0时,x=1;
    (2)当a-b-c=0时,x=-1;
    (3)当4a-2b+c=0时,x=-2.
    故答案是:(1)1 (2)-1 (3)-2
    考法06 整体代换思想
    【例题6】已知整式的值为6,则整式2x2-5x+6的值为( )
    A.9B.12C.18D.24
    【答案】C
    【解析】
    观察题中的两个代数式,可以发现,2x2-5x=2(x2-x),因此可整体求出式x2-x的值,然后整体代入即可求出所求的结果.
    解答:解:∵x2-x=6
    ∴2x2-5x+6=2(x2-x)+6
    =2×6+6=18,故选C.
    【即学即练1】已知a是方程x2-2x-1=0的一个根,则代数式2a2-4a-1的值为( )
    A.1B.C.或1D.2
    【答案】A
    【解析】
    ∵a是方程的一个根,


    故选A.
    【即学即练2】已知a是方程x2+x﹣1=0的一个根,则的值为( )
    A.B.C.﹣1D.1
    【答案】D
    【解析】
    原式==,
    ∵a是方程x2+x﹣1=0的一个根,
    ∴a2+a﹣1=0,
    即a2+a=1,
    ∴原式==1.
    故选D.
    【即学即练3】已知x=﹣1是一元二次方程的一个根,求的值.
    【答案】﹣1.
    【解析】
    解:∵x=﹣1是一元二次方程的一个根,


    【即学即练4】是方程的根,则式子的值为( )
    A.2014B.2015C.2016D.2017
    【答案】B
    【解析】
    ∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,即m2+m=1,∴m3+2m2+2014=m(m2+m)+m2+2014=m+m2+2014=1+2014=2015.
    故选B.
    考法07 列一元二次方程
    【例题1】根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式.
    (1)一个长方形的长比宽多,面积是,求长方形的长x;
    (2)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x;
    (3)在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,假设参加聚会小朋友有x人.
    【答案】
    (1),化为一般形式是;
    (2),化为一般形式是;
    (3),化为一般形式为.
    【解析】
    解:(1)设长方形的长为,则宽为,
    ∴,
    化为一般形式是;
    (2)依题意得,
    化为一般形式是;
    (3)假设参加聚会的有x个小朋友,那么每个小朋友应该送出件礼物,则x个小朋友共送出件礼物,可列方程为,
    化为一般形式为.
    【即学即练1】根据下列问题,列出关于的方程,并将其化成一元二次方程的一般形式.
    (1)4个完全相同的正方形的面积之和是25,求正方形的边长.
    (2)一个矩形的长比宽多2,面积是100,求矩形的长.
    (3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长.
    【答案】(1) ;(2) ;(3) .
    【解析】
    (1)依题意得,,
    化为一元二次方程的一般形式得,.
    (2)依题意得,,
    化为一元二次方程的一般形式得,.
    (3)依题意得,,
    化为一元二次方程的一般形式得,.
    分层提分
    题组A 基础过关练
    1.若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是( )
    A.m≠1B.m≠0
    C.m≥0且m≠1D.m为任意实数
    【答案】C
    【解析】
    解:根据题意得:
    解得:m≥0且m≠1.
    故选C.
    2.下列方程中是关于x的一元二次方程的是( )
    A.B.
    C.D.
    【答案】C
    【解析】
    A选项:时,方程就不是二次方程,故A错误;
    B选项:x在分母上,不满足方程左右两边均为整式的条件,故B错误;
    C选项:整理得:,符合一元二次方程的定义,故C正确;
    D选项:整理得:,故D错误.
    综上所述.
    故选:C.
    3.若是关于的方程的一个根,则的值是( )
    A.-3B.-1C.1D.3
    【答案】A
    【解析】
    解:把x=n代入x2+mx+3n=0得n2+mn+3n=0,
    ∵n≠0,
    ∴n+m+3=0,
    即m+n=-3.
    故选A.
    4.若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a-b+c的值是( )
    A.-1B.1C.0D.不能确定
    【答案】C
    【解析】
    解:将x=-1代入方程得, a-b+c=0
    故答案为C
    5.已知x=﹣1是一元二次方程x2+mx+3=0的一个解,则m的值是( )
    A.4B.﹣4C.﹣3D.3
    【答案】A
    【解析】
    解:把x=﹣1代入x2+mx+3=0得1﹣m+3=0,解得m=4.
    故选:A.
    6.若是方程的根,则的值为( )
    A.B.C.D.
    【答案】C
    【解析】
    是方程的根,

    故选:C.
    7.关于x的一元二次方程(a+2)x2+x+a2-4=0的一个根为0,则a的值为( )
    A.2B.-2C.±2D.0
    【答案】A
    【解析】
    把x=0代入原方程得a2-4=0,即a= ±2,
    又∵a+20,∴a=2,选A.
    8.若a-b+c=0,则方程ax2+bx+c=0(a)必有一个根是( )
    A.0B.1C.-1D.
    【答案】C
    【解析】
    ∵x=-1时,代入方程得a×(-1)2+b×(-1)+c=0,即a-b+c=0
    故方程有一个根是x=-1
    故选C.
    9.方程2x 2 =1-3x化成一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为( )
    A.2,1,-3B.2,3,-1C.2,3,1D.2,1,3
    【答案】B
    【解析】
    2x2=1-3x化成一元二次方程一般形式是2x2+3x-1=0,
    它的二次项系数是2,一次项系数是3,常数项是-1.
    故选B.
    10.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为( )
    A.2或-2B.2C.-2D.0
    【答案】B
    【解析】
    解:由题意得:|m|=2,且m+2≠0,
    解得:m=2.
    故选:B.
    11.下列说法正确的是( )
    A.形如ax2+bx+c=0的方程叫做一元二次方程
    B.(x+1)(x-1)=0是一元二次方程
    C.方程x2-2x=1的常数项为0
    D.一元二次方程中,二次项系数、一次项系数及常数项都不能为0
    【答案】B
    【解析】
    A.一元二次方程的一般形式规定a、b、c为常数且a≠0,故此选项错误;
    B.(x+1)(x-1)=0变形后为x2-1=0,是一元二次方程,故此选项正确;
    C.该方程的常数项是-1,故此选项错误;
    D.一元二次方程中,二次项系数不能为0,一次项系数可以为0,故此选项错误;
    故选B.
    12.一元二次方程化成一般式后,二次项系数为1,一次项系数为﹣1,则的值为( )
    A.﹣1B.1C.﹣2D.2
    【答案】B
    【解析】
    方程整理得:x2﹣ax+1=0.
    ∵结果一次项系数为﹣1,∴﹣a=﹣1,即a=1.
    故选B.
    题组B 能力提升练
    13.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.
    【答案】﹣2
    【解析】
    ∵2是关于x的一元二次方程的一个根,
    ∴,
    ∴n+m=−2,
    故答案为−2.
    14.若关于x的方程有一个根是1,则_________.
    【答案】1
    【解析】
    解:把x=1代入方程得1+a-2=0,
    解得a=1.
    故答案是:1.
    15.若方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=_____.
    【答案】2
    【解析】
    解:由题意得,,解得,
    16.若a是方程的解,计算:=______.
    【答案】0
    【解析】
    ∵a是方程x2﹣3x+1=0的一根,
    ∴a2﹣3a+1=0,即a2﹣3a=﹣1,a2+1=3a

    故答案为0.
    17.关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0 的解是__________.
    【答案】x=-4,x=-1
    【解析】
    解:∵关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),
    ∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,
    解得x=-4或x=-1.
    故方程a(x+m+2)2+b=0的解为x1=-4,x2=-1.
    故答案为x1=-4,x2=-1.
    18.若关于x的一元二次方程有一个根为0,则a的值为_________.
    【答案】-2
    【解析】
    解:把x=0代入方程得:a2-4=0,
    (a-2)(a+2)=0,
    可得a-2=0或a+2=0,
    解得:a=2或a=-2,
    当a=2时,a-2=0,此时方程不是一元二次方程,舍去;
    则a的值为-2.
    故答案为:-2.
    19.某商品的原价为120元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是_____元(结果用含m的代数式表示).
    【答案】100(1﹣m)2
    【解析】
    第一次降价后价格为100(1-m)元,第二次降价是在第一次降价后完成的,所以应为100(1-m)(1-m)元,
    即100(1-m)2元.
    故答案为100(1-m)2.
    20.若方程x2+mx+1=0和x2+x+m=0有公共根,则常数m的值是___.
    【答案】-2.
    【解析】
    设方程x2+mx+1=0和x2+x+m=0的公共根为t,
    则t2+mt+1=0①,
    t2+t+m=0②,
    ①-②得(m-1)t=m-1,
    如果m=1,那么两个方程均为x2+x+1=0无解,不符合题意;
    如果m≠1,那么t=1,
    把t=1代入①,得1+m+1=0,解得m=-2.
    故常数m的值为-2.
    故答案为-2.
    21.已知=0 是关于 x 的一元二次方程,则 k 为___________.
    【答案】-2
    【解析】
    已知=0 是关于 x 的一元二次方程,可得,1-k≥0,解得k=-2.
    题组C 培优拔尖练
    22.某中学数学兴趣小组对关于的方程提出了下列问题:
    (1)是否存在的值,使方程为一元二次方程?若存在,求出的值;
    (2)是否存在的值,使方程为一元一次方程?若存在,求出的值,并解此方程.
    【答案】(1)1 (2),;,
    【解析】
    解:(1)根据一元二次方程的定义,得
    解得.
    (2)由题可知,当即时,方程为一元一次方程.
    此时方程为,解得;
    当即时,方程为一元一次方程,
    此时方程为,解得.
    23.若m是一元二次方程的一个实数根.
    (1)求a的值;
    (2)不解方程,求代数式的值.
    【答案】(1);(2)4
    【解析】
    (1)由于是关于的一元二次方程,
    所以,
    解得;
    (2)由(1)知,该方程为,
    把代入,得,
    所以,①
    由,得,
    所以,②
    把①和②代入,
    得,
    即.
    24.一元二次方程化为一般形式后为,试求的值.
    【答案】
    【解析】
    解:原方程可化为: ax2−(2a−b)x+a−b+c=0,
    由题意得,a=2,2a−b=3,a−b+c=−1,
    解得:a=2,b=1,c=−2,
    ∴.
    25.若关于x的一元二次方程ax2+bx+c=0有一根为-1,且a=+-2,求的值.
    【答案】0
    【解析】
    ∵a=+-2,
    ∴c-4≥0且4-c≥0,即c=4,则a=-2.
    又∵-1是一元二次方程ax2+bx+c=0的根,
    ∴a-b+c=0,
    ∴b=a+c=-2+4=2.
    ∴原式==0.
    26.试证明关于的方程无论取何值,该方程都是一元二次方程;
    【答案】证明见解析.
    【解析】
    ∵a2−8a+20=(a−4)2+4⩾4,
    ∴无论a取何值,a2−8a+20⩾4,即无论a取何值,原方程的二次项系数都不会等于0,
    ∴关于x的方程(a2−8a+20)x2+2ax+1=0,无论a取何值,该方程都是一元二次方程. 学习目标
    (1)会设未知数,列一元二次方程.
    (2)了解一元二次方程及其根的概念.
    (3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.
    二次项
    一次项
    常数项
    a为二次项系数
    b为一次项系数
    已知方程的根
    得出等式
    x=1

    x=
    x=2
    x=
    已知等式
    方程的根
    x=1
    x=1
    x=
    x=
    x=2
    x=2
    x=
    x=
    相关学案

    初中数学人教版九年级上册21.1 一元二次方程学案: 这是一份初中数学人教版九年级上册21.1 一元二次方程学案,共4页。学案主要包含了学习目标,学习重点,学习难点,学习过程等内容,欢迎下载使用。

    初中数学人教版九年级上册21.1 一元二次方程学案: 这是一份初中数学人教版九年级上册21.1 一元二次方程学案,共4页。学案主要包含了课时安排,学习目标,学习重难点,学习过程,达标测评等内容,欢迎下载使用。

    人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程学案及答案: 这是一份人教版九年级上册第二十一章 一元二次方程21.1 一元二次方程学案及答案,共2页。学案主要包含了课时安排,新知探究,精练反馈,学习小结,拓展延伸等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map