人教版九年级下册27.2.3 相似三角形应用举例课后练习题
展开1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈B.四丈五尺C.一丈D.五尺
【详解】设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴,
解得x=45(尺),
即竹竿的长为四丈五尺.
故选B
2.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的( )
A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似
【详解】根据题意画出如下图形:可以得到,则
即为金字塔的高度,即为标杆的高度,通过测量影长即可求出金字塔的高度
故选:D.
3.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为( )
A.B.C.D.
【详解】
∵,,
∴∠ABO=∠CDO,
∵∠AOB=∠COD,
∴△AOB∽△COD,
∴
∵AO=4m ,AB=1.6m ,CO=1m,
∴.
故选C.
4.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为米的竹竿的影长为米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为米,一级台阶高为米,如图所示,若此时落在地面上的影长为米,则树高为( )
A.11.5米B.11.75米C.11.8米D.12.25米
【详解】如图,根据题意可知EF=BC=4.4米,DE=0.2米,BE=FC=0.3米,则ED=4.6米,
∵同一时刻物高与影长成正比例,
∴AE:ED=1:0.4,即AE:4.6=1:0.4,
∴AE=11.5米,
∴AB=AE+EB=11.5+0.3=11.8米,
∴树的高度是11.8米,
故选C.
5.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为( )
A.12mB.13.5mC.15mD.16.5m
【详解】∵∠DEF=∠BCD=90°,∠D=∠D,
∴△DEF∽△DCB,
∴,
∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,
∴由勾股定理求得DE=40cm,
∴,
∴BC=15米,
∴AB=AC+BC=1.5+15=16.5(米).
故答案为16.5m.
6.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cmB.5.4 cmC.3.6 cmD.0.6 cm
【详解】由已知可得,△ABO∽CDO,
所以, ,
所以,,
所以,AB=5.4
故选B
7.如图,有一块锐角三角形材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使其一边在BC上,其余两个顶点分别在AB、AC上,则这个正方形零件的边长为
A.40mmB.45mmC.48mmD.60mm
【详解】因为正方形PQMN的QM边在BC上,
∴PN∥BC,
∴△APN∽△ABC,
∴,
设ED=x,
∴PN=MN=ED=x,,
∴解得:x=48,
∴这个正方形零件的边长是48mm.
故选:C.
8.为测量被池塘相隔的两棵树,的距离,数学课外兴趣小组的同学们设计了如图所示的测量方案:从树沿着垂直于的方向走到,再从沿着垂直于的方向走到,为上一点,其中位同学分别测得三组数据:,,,,,,其中能根据所测数据求得,两树距离的有( )
A.0组B.一组C.二组D.三组
【详解】第①组中,已知∠ACB和AC的长,在Rt△ACB中利用∠ACB的正切求AB的长即可;
第②组中,已知CD、∠ACB、∠ADB,解Rt△ABD和Rt△ACD即可求得AB的长;
第③组中,根据已知条件可得△ABD∽△EFD,利用相似三角形的性质即可求出AB的长.
故选D.
9.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是( )
A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm2
【详解】先根据AC⊥OB,BD⊥OB可得出△AOC∽△BOD,由相似三角形的对应边成比例可求出BD的长,进而得出BD′=0.3m,再由圆环的面积公式即可得出结论.
如图,已知AC⊥OB,BD⊥OB,所以AC//BD,所以△AOC∽△BOC,
所以根据相似三角形的性质可得
即
解得BD=0.9m,
同理可得:AC′=0.2m,则BD′=0.3m,
所以S圆环形阴影=0.92π﹣0.32π=0.72πm2.
故选D.
10.如图,路灯P点距地面9m,身高1.8m的小明从距路灯底部O点20m的A点沿AO所在的直线行走了14m到达B点时,则小明的身影( )
A.增长了3米B.缩短了3米
C.缩短了3.5米D.增长了3.5米
【详解】,
,
,
即,
解得,
,
,
,
即,
解得,
,
小明的身影缩短了3.5米.
故选C.
11.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米,求木杆PQ的长度.
【详解】解:如图,过点N作ND⊥PQ于D,则DN=PM,
∴△ABC∽△QDN,
.
∵AB=2米,BC=1.6米,PM=1.2米,NM=0.8米,
=1.5(米),
∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(米).
答:木杆PQ的长度为2.3米.
12.如图,在相对的两栋楼中间有一堵墙,甲、乙两人分别在这两栋楼内观察这堵墙,视线如图1所示.根据实际情况画出平面图形如图2(CD⊥DF,AB⊥DF,EF⊥DF),甲从点C可以看到点G处,乙从点E可以看到点D处,点B是DF的中点,墙AB高5.5米,DF=100米,BG=10.5米,求甲、乙两人的观测点到地面的距离之差(结果精确到0.1米)
【详解】解:由题意得∠ABG=∠CDG=90°,
又∵∠AGD为公共角,
∴△ABG∽△CDG,
∴=,
∵AB=5.5米,BG=10.5米,
∴=,
∴CD≈31.69(米)
又∵∠ABD=∠EFD=90°,∠EDF为公共角,
∴△ADB∽△EDF,
∴==,
∴EF=2AB=11(米)
∴CD-EF≈20.7(米)
答:甲、乙两人的观测点到地面的距离之差约为20.7米.
13.如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.
(1)求证:△BEF∽△CDF;
(2)求CF的长.
【详解
(1)在矩形ABCD中,由对称性可得出:∠DFC=∠EFB,∠EBF=∠FCD=90°,
∴△BEF∽△CDF;
(2)∵△BEF∽△CDF.
∴,即,
解得:CF=169.
即:CF的长度是169cm.
14.如图,一条河的两岸BC与DE互相平行,两岸各有一排景观灯(图中黑点代表景观灯),每排相邻两景观灯的间隔都是10 m,在与河岸DE的距离为16 m的A处(AD⊥DE)看对岸BC,看到对岸BC上的两个景观灯的灯杆恰好被河岸DE上两个景观灯的灯杆遮住.河岸DE上的两个景观灯之间有1个景观灯,河岸BC上被遮住的两个景观灯之间有4个景观灯,求这条河的宽度.
【详解】由题意可得DE∥BC,所以=.
又因为∠DAE=∠BAC,所以△ADE∽△ABC.
所以=,即=.
因为AD=16m,BC=50m,DE=2 m,
所以=.解得DB=24m.
答:这条河的宽度为24m.
15.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.
【详解】解:∵CD∥EF∥AB,
∴可以得到△CDF∽△ABF,△ABG∽△EFG,
∴,,
又∵CD=EF,
∴,
∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,
∴
∴BD=9,BF=9+3=12
∴
解得,AB=6.4m
因此,路灯杆AB的高度6.4m.
16.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.
【详解】在△ABC与△AMN中,,,
∴,
∵∠A=∠A,
∴△ABC∽△ANM,
∴,即,解得MN=1.5(千米) ,
因此,M、N两点之间的直线距离是1.5千米.
【B组-提高题】
17.如图,为了求出海岛上的山峰AB的高度,在D处和F处树立标杆CD和EF,标杆的高都是3丈,D、F两处相隔1000步(1丈10尺,1步6尺),并且AB,CD和EF在同一平面内.从标杆CD后退123步的G处,可以看到顶峰A和标杆顶端C在一条直线上;从标杆EF后退127步的H处,可以看到顶峰A和标杆顶端E在一条直线上.求山峰的高度AB及它和标杆CD的水平距离BD各是多少步?(提示:连接EC并延长交AB于点K,用AK与常数的积表示KC和KE.)(本题原出自我国魏晋时期数学家刘徽所著《重差》,后作为唐代的《海岛算经》中的第一题:今有望海岛,立两表齐高三丈,前后相去千步,令后表与前表参相直.从前表却行一百二十三步,人目着地,取望岛峰,与表末参合.从后表却行一百二十七步,人目着地,取望岛峰,亦与表末参合.问岛高及去表各几何.唐代的1尺约等于现在的.)
【详解】解:
由题意可知,
又∵,,
∴,,
∴ , ,
∵丈=5步,步,步,
∴ , ,
∴ ,
∴步, ,
∴步,
答:山峰的高度AB为1255步,它和标杆CD的水平距离BD为30750步.
初中人教版29.2 三视图精练: 这是一份初中人教版<a href="/sx/tb_c10299_t7/?tag_id=28" target="_blank">29.2 三视图精练</a>,共8页。
初中数学人教版九年级下册29.1 投影课堂检测: 这是一份初中数学人教版九年级下册<a href="/sx/tb_c28356_t7/?tag_id=28" target="_blank">29.1 投影课堂检测</a>,共11页。
数学人教版27.3 位似随堂练习题: 这是一份数学人教版27.3 位似随堂练习题,共8页。