搜索
    上传资料 赚现金
    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算(12大考点,知识串讲+热考题型+专题训练)-
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算【12大考点】(原卷版)讲义.docx
    • 解析
      【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算【12大考点】(解析版)讲义.docx
    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算(12大考点,知识串讲+热考题型+专题训练)-01
    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算(12大考点,知识串讲+热考题型+专题训练)-02
    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算(12大考点,知识串讲+热考题型+专题训练)-03
    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算(12大考点,知识串讲+热考题型+专题训练)-01
    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算(12大考点,知识串讲+热考题型+专题训练)-02
    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算(12大考点,知识串讲+热考题型+专题训练)-03
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算(12大考点,知识串讲+热考题型+专题训练)-

    展开
    这是一份【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算(12大考点,知识串讲+热考题型+专题训练)-,文件包含寒假作业苏教版2019高中数学高一寒假提升训练专题01集合及其运算12大考点原卷版讲义docx、寒假作业苏教版2019高中数学高一寒假提升训练专题01集合及其运算12大考点解析版讲义docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    知识聚焦
    考点聚焦
    知识点1 集合的概念与元素特性
    1、元素定义:一般地,把研究对象统称为元素,元素常用小写的拉丁字母a,b,c,…表示.
    2、集合定义:把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A,B,C,…表示.
    3、元素的三大特性
    (1)确定性:给定的集合,它的元素必须是确定的.也就是说,任何一个元素在不在这个集合中是确定的.
    (2)互异性:一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的.
    (3)无序性:给定集合中的元素是不分先后,没有顺序的.
    知识点2 元素与集合的关系
    1、属于与不属于概念:
    (1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.
    (2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作a∉A.
    2、常见数集的记法与关系图
    知识点3 集合的表示方法
    1、列举法:把集合的所有元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法.
    2、描述法:设是一个集合,我们把集合中所有具有共同特征的元素所组成的集合表示为,这种表示集合的方法称为描述法.
    知识点4 集合间的基本关系
    1、子集、真子集、相等、空集
    2、子集个数:如果集合A中含有n个元素,则有
    (1)A的子集的个数有2n个.
    (2)A的非空子集的个数有2n-1个.
    (3)A的真子集的个数有2n-1个.
    (4)A的非空真子集的个数有2n-2个.
    知识点5 集合的基本运算
    1、并集:由所有属于集合或集合的元素组成的集合,称为集合与的并集.
    记作:,即.
    2、交集:由属于集合A且属于集合B的所有元素组成的集合,称为集合与的交集.
    记作:,即.
    3、补集:对于集合A,由全集U中不属于集合A的所有元素组成的集合,称为集合A相对于全集U的补集,记作:,即.
    考点剖析
    考点1 判断元素与集合的关系
    【例1】(2023秋·全国·高一专题练习)给出下列关系:①;②;③;④.其中正确的个数为( )
    A.1 B.2 C.3 D.4
    【答案】B
    【解析】显然都是实数,①正确,②错误;
    是自然数,③正确;是无理数,不是有理数,④错误,
    所以正确的个数为2.故选:B
    【变式1-1】(2023秋·吉林长春·高一东北师大附中校考阶段练习)已知集合,则必有( )
    A. B. C. D.
    【答案】C
    【解析】因为,
    因为,,,,所以C正确,ABD错误,故选:C
    【变式1-2】(2023秋·高一课时练习)已知,那么( )
    A. B. C. D.
    【答案】A
    【解析】由题意可得所以,故选:A
    【变式1-3】(2023秋·全国·高一专题练习)已知集合且,则下列判断不正确的是( )
    A. B. C. D.
    【答案】D
    【解析】根据集合可知,
    集合表示奇数集,集合表示偶数集,又,所以是奇数,是偶数;
    对于A,因为两个奇数的乘积为奇数,所以,即A正确;
    对于B,因为一个奇数和一个偶数的乘积为偶数,所以,即B正确;
    对于C,因为两个奇数的和为偶数,所以,即C正确;
    对于D,因为两个奇数与一个偶数的和为偶数,所以,所以D错误;故选:D
    【变式1-4】(2023秋·高一课时练习)(多选)下列结论中,不正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    【答案】AB
    【解析】在A中,当时,显然不成立.
    对于B,当,其平方数仍为整数, 显然不成立;
    对于C,当,其绝对值仍为有理数, 正确;
    对于D项,当,其立方仍为实数,正确.故选:AB.
    考点2 根据元素与集合的关系求参数
    【例2】(2023春·甘肃白银·高二校考阶段练习)已知集合,若,则实数的取值范围为( )
    A. B. C. D.
    【答案】A
    【解析】因为集合,且,
    所以,即,解得或.故选:A.
    【变式2-1】(2023秋·广东惠州·高三统考阶段练习)集合 ,若且,则的取值范围为( )
    A. B. C. D.
    【答案】B
    【解析】因为且,所以且,解得.故选:B.
    【变式2-2】(2023秋·吉林白城·高三校考阶段练习)已知集合中的最大元素为,则实数 .
    【答案】1
    【解析】因为,所以,
    所以,解得或,
    显然不满足集合元素的互异性,故舍去,经检验符合题意.
    故答案为:
    【变式2-3】(2023秋·甘肃·高一校考阶段练习)(多选)已知集合,若,则实数a的可能取值为( )
    A.-2 B.0 C.2 D.4
    【答案】AB
    【解析】当,即时,,符合题意;
    当,即时,不符合题意;
    当,即或时.若,不符合题意;
    若,,符合题意.故选:AB.
    【变式2-4】(2023·江苏·高一专题练习)(多选)已知集合A中有个元素,,,且当时,,则可能为( )
    A. B. C. D.或或
    【答案】AB
    【解析】对于A,当时,,满足题意,A正确;
    对于B,当时,,满足题意,B正确;
    对于C,当时,,不合题意,C错误;
    对于D,由ABC知:或,D错误.故选:AB.
    考点3 根据集合中元素个数求参数
    【例3】(2022·全国·高一专题练习)若集合,则实数的取值范围是( )
    A. B. C. D.,
    【答案】C
    【解析】,∴方程无解,即,
    解得:,则实数的范围为,故选:C.
    【变式3-1】(2022秋·河北衡水·高一校考阶段练习)(多选)已知集合,则满足中有8个元素的的值可能为( )
    A.6 B. C.8 D.9
    【答案】ABC
    【解析】当时,满足的有6,3,2,1,,,,,
    即集合中有8个元素,符合题意,故A可选,
    当时,满足的有6,3,2,1,,,,,
    即集合中有8个元素,符合题意,故B可选,
    当时,满足的有8,4,2,1,,,,,
    即集合中有8个元素,符合题意,故C可选,
    当时,满足的有9,3,1,,,,
    即集合中有6个元素,不符合题意,故D不可选,故选:ABC.
    【变式3-2】(2023秋·甘肃武威·高一校考阶段练习)(多选)已知集合中只有一个元素,则实数a的可能取值为( )
    A.0 B.1 C.2 D.4
    【答案】ABD
    【解析】当时,,解得,所以,符合题意;
    当时,由题意,得,解得或.故选:ABD
    【变式3-3】(2023秋·河南商丘·高一校考阶段练习)若集合中有2个元素,求k的取值范围.
    【答案】且.
    【解析】由题意得且,解得且.
    故实数k的取值范围为且.
    【变式3-4】(2022秋·湖南长沙·高一校考阶段练习)已知全集,.
    (1)若中有个元素,求实数的值;
    (2)若中有四个元素,求实数的值.
    【答案】(1);(2)
    【解析】(1)由中有个元素,集合中有两个元素,
    即方程有两个不等的实根,,
    则,且,,
    则,;
    (2)由中有四个元素,则集合中有且只有一个元素,
    则方程有且只有一个实数根,
    则,且,
    则,.
    考点4 集合相等及其应用
    【例4】(2023秋·贵州遵义·高一校考阶段练习)(多选)给出以下几组集合,其中是相等集合的有( )
    A., B.,
    C., D.,
    【答案】CD
    【解析】对于A,是点集,是数集,,故A错误;
    对于B,,故B错误;
    对于C,,,故C正确;
    对于D,,
    ,故D正确.故选:CD.
    【变式4-1】(2022秋·全国·高一阶段练习)(多选)下列集合中,与相等的是( )
    A. B. C. D.
    【答案】BC
    【解析】对于A选项,,A不满足条件;
    对于B选项,,B满足条件;
    对于C选项,,C满足条件;
    对于D选项,,D不满足条件.故选:BC.
    【变式4-2】(2023秋·宁夏银川·高一校考阶段练习)已知集合,,,则的值为( )
    A.3 B. C.1 D.
    【答案】A
    【解析】因为集合,,,
    所以,即,
    所以,因为,所以的值为.故选:A .
    【变式4-3】(2023·全国·高一专题练习)已知实数集合若,则( )
    A. B.0 C.1 D.2
    【答案】A
    【解析】由题意可知,两集合元素全部相等,
    得到或
    又根据集合互异性,可知,解得或(舍),
    所以故选:A.
    【变式4-4】(2023秋·山东菏泽·高一校考阶段练习)已知,,若集合,则的值为( )
    A. B. C.1 D.2
    【答案】B
    【解析】根据题意,,故,则,
    则,由集合的互异性知且,
    故,则, 即或(舍),
    当时,,符合题意,
    所以.故选:B.
    考点5 判断集合与集合之间的关系
    【例5】(2023·全国·高一专题练习)(多选)已知集合,则下列关系正确的是( )
    A. B. C. D.A
    【答案】CD
    【解析】因为集合,
    所以根据子集及真子集的定义可知A .故选:CD.
    【变式5-1】(2023秋·江西·高三统考开学考试)已知全集,若集合满足,则( )
    A. B. C. D.
    【答案】D
    【解析】依题意,,
    又,则或,
    因此,,不是的子集,
    ,即ABC错误,D正确.故选:D
    【变式5-2】(2023秋·山西晋城·高三校考阶段练习)设集合,,则( )
    A. B. C. D.
    【答案】C
    【解析】对任意,则存在,使得,显然,因此,
    但,而,所以是的子集也是真子集,四个选项中只有C正确,故选:C.
    【变式5-3】(2021秋·高一课时练习)已知集合,,则M,P之间的关系为( )
    A.M=P B. C. D.
    【答案】B
    【解析】因为,

    所以.故选:B.
    【变式5-4】(2023秋·全国·高一专题练习)已知集合,,,则,,的关系为( )
    A. B. C. D.
    【答案】B
    【解析】因为,


    且,,,,
    ,,所以.故选:B
    考点6 根据集合之间的关系求参数
    【例6】(2023秋·江苏连云港·高一校考开学考试)(多选)已知集合,,若,则实数a的值可以是( )
    A.0 B. C.2 D.
    【答案】ABD
    【解析】由,得到或,即,
    因为,由,
    当时,无解,此时,满足题意,
    当时,得到,所以或,得到或,故选:ABD.
    【变式6-1】(2023秋·甘肃武威·高一校考阶段练习)已知集合,,若,则实数m的取值范围是( )
    A. B. C. D.
    【答案】C
    【解析】.
    若,则,解得,符合题意;
    若时,则解得.
    综上,实数m的取值范围是.故选:C.
    【变式6-2】(2023秋·江苏连云港·高一校考开学考试)已知集合,,且,则实数m的取值范围是( )
    A. B. C. D.
    【答案】A
    【解析】因为,所以,
    又,,所以,得到,故选:A.
    【变式6-3】(2023·上海·高一专题练习)已知,.
    (1)若是的子集,求实数的值;
    (2)若是的子集,求实数的取值范围.
    【答案】(1);(2)或
    【解析】(1)因为,
    若是的子集,则,
    所以,解得.
    (2)若是的子集,则.
    ①若为空集,则,解得;
    ②若为单元素集合,则,解得.
    将代入方程,得,解得,
    所以,符合要求;
    ③若为双元素集合,,则.
    综上所述,或.
    【变式6-4】(2022秋·河南商丘·高一校考阶段练习)已知集合,集合.
    (1)当时,求;
    (2)若,求实数的取值范围.
    【答案】(1);(2)
    【解析】(1)当时,,已知,
    由.
    (2),
    若,则,解得.
    考点7 求集合的子集与真子集
    【例7】(2024秋·江西·高三校联考阶段练习)已知集合,,则的真子集的个数为( )
    A.6 B.7 C.8 D.15
    【答案】B
    【解析】因为,
    又,
    所以,所以的真子集有个.故选:B
    【变式7-1】(2023秋·辽宁大连·高一校考阶段练习)设集合,,记,则集合的真子集个数是( )
    A.3 B.4 C.7 D.8
    【答案】C
    【解析】.
    集合的真子集个数是:.故选:C.
    【变式7-2】(2023秋·四川南充·高一校考阶段练习)已知集合,,则集合的真子集的个数为( )
    A.3 B.6 C.7 D.8
    【答案】C
    【解析】因为,,所以,
    所以集合的真子集的个数为,故选:C
    【变式7-3】(2023秋·江苏泰州·高一校考阶段练习)满足的集合的个数有( )个
    A.8 B.7 C.6 D.5
    【答案】B
    【解析】集合A中一定含有1,2,3,可能含有4,5,6,但不能同时含有4,5,6.
    由此可得到满足条件的集合A的个数就是集合的真子集个数,共有个.故选:B
    【变式7-4】(2023秋·山东菏泽·高一校考阶段练习)(多选)若{1,2}⊆B {1,2,3,4},则B=( )
    A.{1,2} B.{1,2,3} C.{1,2,4} D.{1,2,3,4}
    【答案】ABC
    【解析】∵{1,2}⊆B{1,2,3,4},
    ∴B={1,2}或B={1,2,3}或B={1,2,4},故选:ABC
    考点8 空集的运算及其性质
    【例8】(2022秋·河北承德·高一校考期末)有下列关系式:①;②;③;④;⑤;⑥.其中不正确的是( )
    A.①③④ B.②④⑤ C.②⑤⑥ D.③④
    【答案】D
    【解析】对①:因为集合元素具有无序性,显然①正确;
    对②:因为集合,故正确,即②正确;
    对③:空集是一个集合,而集合是以为元素的一个集合,因此,故③不正确;
    对④:是一个集合,仅有一个元素0,但是空集不含任何元素,于是,故④不正确;
    对⑤:由④可知,非空,于是有,因此⑤正确;
    对⑥:显然成立,因此⑥正确.
    综上,本题不正确的有③④,故选:D
    【变式8-1】(2022秋·吉林·高一校考阶段练习)下列说法正确的是( )
    A. B. C. D.
    【答案】C
    【解析】对于A:,选项A错误;
    对于B:是无理数,,选项B错误;
    对于C:是它本身的子集,即,选项C正确;
    对于D:仅当A为空集时,成立,否则不成立,选项D错误.故选:C.
    【变式8-2】(2023·全国·高一专题练习)给出下列说法:
    ①空集没有子集;
    ②任何集合至少有两个子集;
    ③空集是任何集合的真子集;
    ④若,则.
    其中正确的说法有( )
    A.0个 B.1个 C.2个 D.3个
    【答案】A
    【解析】由于任何一个集合都是它本身的子集,空集的子集还是空集,故①不正确;
    由于空集的子集还是空集,所以空集的子集只有一个,故②不正确;
    由于空集的子集还是空集,但不是真子集,故③不正确;
    由于,则或,故④不正确;
    综上,正确的说法有0个.故选:A.
    【变式8-3】(2023秋·江西新余·高一校考开学考试)(多选)以下四个选项表述正确的有( )
    A. B.⫋ C. D.
    【答案】BC
    【解析】对选项A,由不是的元素,故A错误;
    对选项B,由规定:空集是任何集合的子集,则且存在,故⫋,B正确;
    对选项C,由子集概念,中的任意一个元素都是的元素,则,C正确;
    对选项D,由不是的元素,D错误.故选:BC.
    【变式8-4】(2022秋·甘肃酒泉·高一校考期中)已知集合,则实数k的取值范围是 .
    【答案】
    【解析】∵,∴,解得,
    因此实数k的取值范围是.
    故答案为:.
    考点9 集合的交并补综合运算
    【例9】(2023秋·四川成都·高三校考开学考试)设集合,,,则( )
    A. B. C. D.
    【答案】B
    【解析】由,,得,所以,故选:B
    【变式9-1】(2023秋·山东·高三校联考阶段练习)已知集合,,则( )
    A. B. C. D.
    【答案】D
    【解析】因为,,所以.故选:D
    【变式9-2】(2023春·甘肃平凉·高二校考阶段练习)设已知集合,,则( )
    A. B. C. D.
    【答案】A
    【解析】由,即,解得,
    所以,
    所以,
    又,所以.故选:A
    【变式9-3】(2023秋·全国·高一专题练习)已知集合,集合,则下列关系式正确的是( )
    A. B.
    C.或 D.
    【答案】D
    【解析】,,
    , 故A不正确;
    ,故B不正确;
    或,
    或或,故C不正确;
    或,故D正确.故选:D.
    【变式9-4】(2023秋·宁夏银川·高一校考阶段练习)已知集合,,实数集为全集.
    (1)求,; (2)求.
    【答案】(1);(2)或
    【解析】(1)因为,,
    所以;
    (2)或,
    所以或.
    考点10 根据集合的运算结果求参数
    【例10】(2023秋·全国·高一专题练习)设集合或,若,则的取值范围是( )
    A.或 B.或 C. D.
    【答案】B
    【解析】由集合或,得,
    又集合且,
    则2或,即或.故选:B.
    【变式10-1】(2022春·四川南充·高一校考开学考试)已知集合,,且,则实数的取值范围为( )
    A. B. C. D.
    【答案】D
    【解析】因为,所以,
    又,且,
    所以,即实数的取值范围为.故选:D
    【变式10-2】(2022春·重庆沙坪坝·高二重庆八中校考期末)已知集合,,若,则实数k的取值范围为 .
    【答案】
    【解析】由不等式,分解因式可得,解得或,
    即或,,
    由,.
    故答案为:.
    【变式10-3】(2023秋·浙江台州·高一统考期末)已知集合,.
    (1)若,求;
    (2)若,求实数a的取值范围.
    【答案】(1);(2)
    【解析】(1)若,则,
    因为,所以;
    (2)由题,得,由,得,
    若,则,得,
    若,即时,则有,或,得或,
    综上,
    【变式10-4】(2023秋·吉林长春·高一校考期末)已知集合,集合.
    (1)求;
    (2)设,若,求实数的取值范围.
    【答案】(1)或,;(2)
    【解析】(1)依题意,集合,集合,
    所以或,.
    (2)由(1)得或,
    而且,
    所以,解得,所以的取值范围是.
    考点11 Venn图的应用
    【例11】(2023秋·宁夏石嘴山·高三校考阶段练习)已知全集,如图所示,阴影部分表示的集合是( )
    A. B. C. D.
    【答案】D
    【解析】由题图可知,阴影部分表示的集合是,
    因为,可得,
    所以.故选:D.
    【变式11-1】(2022秋·河北保定·高一校考阶段练习)已知全集 ,集合 , ,则如图阴影部分表示的集合是( )
    A. B. C. D.
    【答案】C
    【解析】,
    ,则.
    故阴影部分表示的集合是.故选:C
    【变式11-2】(2023秋·全国·高一专题练习)如图,是全集,是的子集,则阴影部分表示的集合是( )
    A. B. C. D.
    【答案】C
    【解析】由图知,阴影部分在集合M中,且在集合P中,但不在集合S中,
    故阴影部分所表示的集合是.故选:C.
    【变式11-3】(2023秋·四川眉山·高一校考开学考试)(多选)图中矩形表示集合U,两个椭圆分别表示集合M,N,则图中的阴影部分可以表示为( )
    A. B. C. D.
    【答案】AD
    【解析】选项A,,则,故A正确;
    选项B,,则,故B错误;
    选项C,,,
    则,故C错误;
    选项D,,,
    则,故D正确.故选:AD
    【变式11-4】(2023秋·江苏扬州·高三统考开学考试)(多选)已知全集U,集合A,B是U的子集,且,则下列结论中正确的是( )
    A. B. C. D.
    【答案】AC
    【解析】因为,所以,
    对于A:由,可得,A正确;
    B:由于,故,B错误;
    C:因为,,则,C正确;
    D:由于,故,D错误.故选:AC.
    考点12 集合的新定义问题
    【例12】(2023秋·高一课时练习)已知集合,定义集合运算,则 .
    【答案】
    【解析】由题意知,集合则a与b可能的取值为0,2,3,
    ∴的值可能为0,2,3,4,5,6,∴
    故答案为:
    【变式12-1】(2023秋·宁夏·高一校考阶段练习)已知集合,,定义集合,则中元素个数为( )
    A.6 B.7 C.8 D.9
    【答案】D
    【解析】,,
    由,
    得可取,可取,
    所以有个元素.故选:D.
    【变式12-2】(2023秋·江苏南京·高一校考阶段练习)设集合M是实数集的子集,如果满足:对任意,都存在,使得,则称t为集合M的聚点,则在下列集合中,以0为聚点的集合有( )
    A. B. C. D.
    【答案】ACD
    【解析】A选项,对于任意,显然,使得,
    即0为集合的聚点,A正确;
    B选项,对于任意,不妨令,因为,解得,
    因为在集合中不存在,故B错误;
    C选项,对于任意,存在且,即且时,使得,
    即0为集合的聚点,C正确;
    D选项,令时,,
    对于任意,总存在足够大的使得,
    故0为集合的聚点,D正确.故选:ACD
    【变式12-3】(2023秋·江苏南通·高一校考阶段练习)已知,对于,若且,则称k为A的“孤立元”.给定集合,则A的所有子集中,只有一个“孤立元”的集合的个数为( )
    A.10 B.11 C.12 D.13
    【答案】D
    【解析】“孤立元”为的集合为,,,,
    “孤立元”为的集合为,,
    “孤立元”为的集合为,
    “孤立元”为的集合为,,
    “孤立元”为的集合为,,,,
    综上:满足题意的集合有13个.故选:D
    【变式12-4】(2023秋·全国·高一专题练习)若X是一个非空集合,是一个以的某些子集为元素的集合,且满足:
    (1);
    (2)对于的任意子集,当且时,有;
    (3)对于的任意子集.当且时,有,则称是集合的一个“——集合类”.
    例如: {∅,{b},{c},{b,c},{a,b,c}}是集合的一个“——集合类”.
    已知,则所有含的“M——集合类”的个数为( )
    A.9 B.10 C.11 D.12
    【答案】D
    【解析】依题意知,中至少含有这几个元素:,{b,c},{a,b,c},将它看成一个整体;
    剩余的{a}、{b}、{c}、{a,c}、{a,b};
    ①{a}、{b}、{c}、{a,c}、{a,b}5个中添加0个的集合为{,{b,c},{a,b,c}},1种,
    ②{a}、{b}、{c}、{a,c}、{a,b}5个中添加1个的集合为{,{a},{b,c},{a,b,c}},
    {、{b},{b,c},{a,b,c}},{、{c},{b,c},{a,b,c}},共3种,
    ③{a}、{b}、{c}、{a,c}、{a,b}5个中添加2个的集合共3种,
    即{b}、{c};{c}、{a,c};{b}、{a,b}3种添加方式,
    ④{a}、{b}、{c}、{a,c}、{a,b}5个中添加3个的集合共4种,
    即{a}、{b}、{a,b};{a}、{c}、{a,c};{b}、{c}、{a,b};{b}、{c}、{a,c},
    共4种添加方式,
    ⑤{a}、{b}、{c}、{a,c}、{a,b}5个中添加4个的集合共0种,
    ⑥{a}、{b}、{c}、{a,c}、{a,b}添加5个的集合共1种,
    综上含的“M——集合类”的个数为12种.故选:D
    过关检测
    1.(2023秋·全国·高一专题练习)给出下列关系:①;②;③;④,其中正确的个数为( )
    A.1 B.2 C.3 D.4
    【答案】B
    【解析】是实数,①正确;是无理数,不是有理数,②错误;
    是整数,③错误;是无理数,不是自然数,④正确.
    正确的个数为2个,故选:B.
    2.(2023秋·江苏连云港·高一校考开学考试)若集合,则集合中的元素个数为( )
    A.3 B.4 C.5 D.6
    【答案】C
    【解析】由,即,
    所以集合中的元素个数为5个,故选:C.
    3.(2023秋·江苏南京·高一校考阶段练习)已知集合,,且,则实数的取值范围是( )
    A. B. C. D.
    【答案】C
    【解析】因为,,且,
    所以,即实数的取值范围是.故选:C
    4.(2022秋·河南三门峡·高一校考阶段练习)对任意集合A,下列各式①,②,③,④,正确的个数是( )
    A.1 B.2 C.3 D.4
    【答案】B
    【解析】空集表示无任何元素的集合,所以,①错误;
    由交集性质知:,②正确;
    由并集性质知,,③正确;
    是自然数集,是实数集,所以,④错误.
    综上:只有②③正确.故选:B
    5.(2022秋·重庆万州·高一校考阶段练习)若则满足条件的集合A的个数是( )
    A.9 B.8 C.7 D.6
    【答案】B
    【解析】因为,
    所以或或或或或或或,
    即满足条件的集合的个数为8,故选:B.
    6.(2023秋·全国·高一专题练习)已知集合,,全集,则以下集合( )是空集
    A. B. C. D.
    【答案】D
    【解析】由得,由得,
    故,,,,
    仅D选项符合题意.故选:D
    7.(2023秋·山西运城·高一校考阶段练习)(多选)考查下列每组对象,能构成集合的是( )
    A.中国各地最美的乡村; B.直角坐标系中横、纵坐标相等的点;
    C.不小于3的自然数; D.2018年第23届冬季奥运会金牌获得者.
    【答案】BCD
    【解析】A中“最美”标准不明确,不符合确定性,
    B,C,D选项中的元素标准明确,均可构成集合.故选:BCD.
    8.(2023·全国·高一专题练习)(多选)集合,则下列关系错误的是( )
    A. B. C. D.
    【答案】AB
    【解析】
    时,表示所有奇数,表示所有整数,
    所以且,所以CD正确.故选:AB
    9.(2023·全国·高一专题练习)(多选)非空集合具有如下性质:①若,则;②若,则.下列判断中,正确的有( )
    A. B.
    C.若,则 D.若,则
    【答案】ABC
    【解析】由性质①,若,则没有意义,所以,,则,所以B选项正确.
    由性质②,若,而,则,与上述分析矛盾,所以,A选项正确.
    若,则;若,则,所以C选项正确.
    由,得,则,所以D选项错误.故选:ABC
    10.(2023秋·上海浦东新·高一校考阶段练习)已知集合,若,则
    【答案】3或
    【解析】,,
    ,解得或,
    经检验知或.
    11.(2023秋·四川眉山·高一校考开学考试)含有三个实数的集合可表示为,也可以示为,则的值为 .
    【答案】0
    【解析】因为,且,所以,
    则有,
    所以,且,得,
    所以,
    12.(2023秋·辽宁抚顺·高一校考阶段练习)已知集合中有8个子集,则的一个值为 .
    【答案】4或9(写出一个即可)
    【解析】集合中有8个子集,
    由知,集合中有三个元素,则有三个因数,
    因为,,
    除1和它本身外,还有1个,所以的值可以为4,9.
    故答案为:4或9(写出一个即可)
    13.(2022秋·天津·高一统考期中)已知全集,集合,集合或.
    (1)计算和;
    (2)计算和.
    【答案】(1) ,或
    (2)=;或
    【解析】(1)因为,或,
    所以,或.
    (2)因为,或,
    所以或,,
    所以=;或.
    14.(2023·全国·高一专题练习)已知集合,求:
    (1)当时,中至多只有一个元素,求的取值范围;
    (2)当满足什么条件时,集合为空集.
    【答案】(1)或;(2)或
    【解析】(1)由题意得,方程可化为,
    ①当时,方程可化为,得,所以,符合题意,
    ②当时,
    因为中至多只有一个元素,所以,解得,
    综上所述,的取值范围为或;
    (2)①当时,方程可化为,因为为空集,所以,
    ②当时,因为为空集,所以,
    综上所述,当或时,集合为空集.
    15.(2023秋·陕西榆林·高一校考阶段练习)设集合,,.
    (1)若,求实数的值;
    (2)若且,求实数的值.
    【答案】(1)5;(2)
    【解析】(1)由题可得,由,得.
    从而,是方程的两个根,即,解得.
    (2)因为,.
    因为,所以,又,所以,
    即,,解得或.
    当时,,则,不符合题意;
    当时,,则且,故符合题意,
    综上,实数的值为.集合
    自然数集
    正整数集
    整数集
    有理数集
    实数集
    符号
    N
    N*(或N+)
    Z
    Q
    R
    表示
    关系
    文字语言
    符号语言
    图形语言
    基本关系
    子集
    集合A的所有元素都是集合B的元素(则)

    真子集
    集合A是集合B的子集,且集合B中至少有一个元素不属于A

    相等
    集合A,B的元素完全相同
    空集
    不含任何元素的集合.空集是任何集合A的子集
    相关试卷

    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题11+余弦定理(6大考点,知识串讲+热考题型+专题训练)-讲义: 这是一份【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题11+余弦定理(6大考点,知识串讲+热考题型+专题训练)-讲义,文件包含寒假作业苏教版2019高中数学高一寒假提升训练专题11余弦定理6大考点知识串讲+热考题型+专题训练原卷版docx、寒假作业苏教版2019高中数学高一寒假提升训练专题11余弦定理6大考点知识串讲+热考题型+专题训练解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题07+向量的应用(8大考点,知识串讲+热考题型+专题训练)-讲义: 这是一份【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题07+向量的应用(8大考点,知识串讲+热考题型+专题训练)-讲义,文件包含寒假作业苏教版2019高中数学高一寒假提升训练专题07向量的应用8大考点知识串讲+热考题型+专题训练原卷版docx、寒假作业苏教版2019高中数学高一寒假提升训练专题07向量的应用8大考点知识串讲+热考题型+专题训练解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题03 向量的数乘(6大考点,知识串讲+热考题型+专题训练)-讲义: 这是一份【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题03 向量的数乘(6大考点,知识串讲+热考题型+专题训练)-讲义,文件包含寒假作业苏教版2019高中数学高一寒假提升训练专题03向量的数乘6大考点知识串讲+热考题型+专题训练原卷版docx、寒假作业苏教版2019高中数学高一寒假提升训练专题03向量的数乘6大考点知识串讲+热考题型+专题训练解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【寒假作业】苏教版2019 高中数学 高一寒假提升训练 专题01 集合及其运算(12大考点,知识串讲+热考题型+专题训练)-
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map