2023-2024学年北京市101中学九上数学期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.下列手机应用图标中,是中心对称图形的是( )
A.B.C.D.
2.某同学用一根长为(12+4π)cm的铁丝,首尾相接围成如图的扇形(不考虑接缝),已知扇形半径OA=6cm,则扇形的面积是( )
A.12πcm2B.18πcm2C.24πcm2D.36πcm2
3.对于抛物线,下列说法正确的是( )
A.开口向下,顶点坐标B.开口向上,顶点坐标
C.开口向下,顶点坐标D.开口向上,顶点坐标
4.如图,点A、B、C在⊙O上,∠ACB=130°,则∠AOB的度数为( )
A.50°B.80°C.100°D.110°
5.已知的三边长分别为、、,且满足,则的形状是( ).
A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形
6.下列图形中,绕某个点旋转72度后能与自身重合的是( )
A.B.
C.D.
7.下图中反比例函数与一次函数在同一直角坐标系中的大致图象是( )
A.B.
C.D.
8.如图2,在平面直角坐标系中,点的坐标为(1,4)、(5,4)、(1、),则外接圆的圆心坐标是
A.(2,3)B.(3,2)C.(1,3)D.(3,1)
9.抛物线的顶点在( )
A.x轴上B.y轴上C.第三象限D.第四象限
10.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为 ( )
A.20°B.25°C.30°D.50°
二、填空题(每小题3分,共24分)
11.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2﹣4ax﹣5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是_____.
12.某剧场共有个座位,已知每行的座位数都相同,且每行的座位数比总行数少,求每行的座位数.如果设每行有个座位,根据题意可列方程为_____________.
13.一元二次方程配方后得,则的值是__________.
14.如图,是的两条切线,为切点,点分别在线段上,且,则__________.
15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.
16.已知正方形ABCD边长为4,点P为其所在平面内一点,PD=,∠BPD=90°,则点A到BP的距离等于_____.
17.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是_______.(填序号)
18.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.
三、解答题(共66分)
19.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,求抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.
(提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).
20.(6分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,
(1)求点C到直线AB的距离;
(2)求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cs53°≈0.6)
21.(6分)如图,已知抛物线经过的三个顶点,其中点,点,轴,点是直线下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点且与轴平行的直线与直线、分别交与点、,当四边形的面积最大时,求点的坐标;
(3)当点为抛物线的顶点时,在直线上是否存在点,使得以、、为顶点的三角形与相似,若存在,直接写出点的坐标;若不存在,请说明理由.
22.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.
求一次函数和反比例函数的表达式;
请直接写出时,x的取值范围;
过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.
23.(8分)若,且3a+2b﹣4c=9,求a+b﹣c的值是多少?
24.(8分)解不等式组并求出最大整数解.
25.(10分)先化简,再求值:()÷,其中a是一元二次方程对a2+3a﹣2=0的根.
26.(10分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.
(1)求证:OP⊥CD;
(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、A
4、C
5、D
6、B
7、B
8、D
9、B
10、B
二、填空题(每小题3分,共24分)
11、﹣<a<
12、x(x+12)=1
13、1
14、61°
15、-3<x<1
16、或
17、③
18、
三、解答题(共66分)
19、(1)y=x+3;y=﹣x2﹣2x+3;(2)M的坐标是(﹣1,2);(3)P的坐标是(﹣1,)或(﹣1,)或(﹣1,4)或(﹣1,﹣2).
20、(1)40海里;(2)小时.
21、(1);(2);(3)存在, ,
22、反比例函数的解析式为,一次函数解析式为:;当或时,;当点C的坐标为或时,.
23、﹣1.
24、最大整数解为
25、a1+3a,1
26、(1)详见解析;(2).
南通启秀中学2023-2024学年九上数学期末调研模拟试题含答案: 这是一份南通启秀中学2023-2024学年九上数学期末调研模拟试题含答案,共6页。试卷主要包含了方程x2-4=0的解是等内容,欢迎下载使用。
2023-2024学年德宏市重点中学九上数学期末调研模拟试题含答案: 这是一份2023-2024学年德宏市重点中学九上数学期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
宜兴市洑东中学2023-2024学年九上数学期末调研模拟试题含答案: 这是一份宜兴市洑东中学2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了方程的两根分别为等内容,欢迎下载使用。