2023-2024学年北京市海淀区中学国人民大附属中学九年级数学第一学期期末联考试题含答案
展开
这是一份2023-2024学年北京市海淀区中学国人民大附属中学九年级数学第一学期期末联考试题含答案,共9页。试卷主要包含了抛物线y=,在中,,,则的值为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房建设力度年市政府共投资亿元人民币建设廉租房万平方米,预计到年底三年共累计投资亿元人民币建设廉租房,若在这两年内每年投资的增长率都为,可列方程( )
A.B.
C.D.
2.如图,点从菱形的顶点出发,沿以的速度匀速运动到点,下图是点运动时,的面积随时间变化的关系图象是( )
A.B.
C.D.
3.设a,b是方程的两个实数根,则的值为
A.2014B.2015C.2016D.2017
4.抛物线y=(x+1)2+2的顶点( )
A.(﹣1,2) B.(2,1) C.(1,2) D.(﹣1,﹣2)
5.如图,是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是直线x=1对于下列说法:①abc<0;②2a+b=0;③3a+c>0; ④当﹣1<x<3时,y>0;⑤a+b>m(am+b)(m≠1),其中正确有( )
A.1个B.2个C.3个D.4个
6.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )
A.B.C.D.
7.将抛物线y=向左平移2个单位后,得到的新抛物线的解析式是( )
A.B.y=
C.y=D.y=
8.连接对角线相等的任意四边形各边中点得到的新四边形的形状是( )
A.正方形B.菱形C.矩形D.平行四边形
9.在中,,,则的值为( )
A.B.C.D.
10.如图,在RtΔABC中∠C=90°,AC=6,BC=8,则sin∠A的值( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.
12.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S1.若S=1,则S1+S1= .
13.抛物线的部分图象如图所示,对称轴是直线,则关于的一元二次方程的解为____.
14.有一块三角板,为直角,,将它放置在中,如图,点、在圆上,边经过圆心,劣弧的度数等于_______
15.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为_____.
16.如上图,四边形中,,点在轴上,双曲线过点,交于点,连接.若,,则的值为 ______.
17.如图,在中,,是三角形的角平分线,如果,,那么点到直线的距离等于___________.
18.定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_______.
三、解答题(共66分)
19.(10分)定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).
(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;
(2)求除点(2,0)外△ABC所有自相似点的坐标;
(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.
20.(6分)如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.
(1)求证:FC是⊙O的切线;
(2)若CF=5,,求⊙O半径的长.
21.(6分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.
22.(8分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;
(3)在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.
23.(8分)如图,在平面直角坐标系中,点为坐标原点,每个小方格的边长为个单位长度,在第二象限内有横、纵坐标均为整数的两点,点,点的横坐标为, 且.
在平面直角坐标系中标出点,写出点的坐标并连接;
画出关于点成中心对称的图形.
24.(8分)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线.
25.(10分)抛物线经过点O(0,0)与点A(4,0),顶点为点P,且最小值为-1.
(1)求抛物线的表达式;
(1)过点O作PA的平行线交抛物线对称轴于点M,交抛物线于另一点N,求ON的长;
(3)抛物线上是否存在一个点E,过点E作x轴的垂线,垂足为点F,使得△EFO∽△AMN,若存在,试求出点E的坐标;若不存在请说明理由.
26.(10分)如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用y=x刻画.
(1)求二次函数解析式;
(2)若小球的落点是A,求点A的坐标;
(3)求小球飞行过程中离坡面的最大高度.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、C
4、A
5、C
6、B
7、A
8、B
9、C
10、B
二、填空题(每小题3分,共24分)
11、1
12、2.
13、
14、1°
15、1.
16、6
17、1
18、
三、解答题(共66分)
19、(1)见解析;(2)△CPA∽△CAB,此时P(,);△BPA∽△BAC,此时P(,);(3)S(3,-2)是△GBD与△GBC公共的自相似点,见解析
20、(1)证明见解析;(2)AO=.
21、树状图见详解,
22、(1)
(2)(0,-1)
(3)(1,0)(9,0)
23、(1)作图见解析;(2)作图见解析.
24、(1)C(-2,2);(2)证明见解析.
25、(1)抛物线的表达式为,(或);(1);(3)抛物线上存在点E,使得△EFO∽△AMN,这样的点共有1个,分别是(,)和(,).
26、(1)y=﹣x2+4x(2)(7,)(3)当小球离点O的水平距离为3.5时,小球离斜坡的铅垂高度最大,最大值是
相关试卷
这是一份北京市海淀区中学国人民大附属中学2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份北京市中学国人民大附属中学2023-2024学年九年级数学第一学期期末达标测试试题含答案,共7页。
这是一份2023-2024学年北京市人民大附属中学数学九上期末联考模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是,对于二次函数y=等内容,欢迎下载使用。