2023-2024学年北京市第三十一中学九年级数学第一学期期末学业质量监测模拟试题含答案
展开
这是一份2023-2024学年北京市第三十一中学九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了 “泱泱华夏,浩浩千秋等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.点关于轴对称的点的坐标是( )
A.B.C.D.
2.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长尺,根据题意列方程组正确的是( )
A.B.C.D.
3.如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为( )
A.B.
C.D.
4.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为( )
A.(,)B.(,)C.(,)D.(,4)
5.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是( )
A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1
C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2
6.反比例函数与在同一坐标系的图象可能为( )
A.B.C.D.
7. “泱泱华夏,浩浩千秋.于以求之?旸谷之东.山其何辉,韫卞和之美玉……”这是武汉16岁女孩陈天羽用文言文写70周年阅兵的观后感.小汀州同学把这篇气势磅礴、文采飞扬的文章放到自己的微博上,并决定用微博转发的方式传播.他设计了如下的传播规则:将文章发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为( )
A.9B.10C.11D.12
8.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有( )
A.1个B.2个C.3个D.4个
9.在下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
10.抛物线y=-(x-2)2+3,下列说法正确的是( )
A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,-3)
C.开口向下,顶点坐标(-2,3)D.开口向上,顶点坐标(-2,-3)
二、填空题(每小题3分,共24分)
11.如图,在中,平分交于点,垂足为点,则__________.
12.直线y=2被抛物线y=x2﹣3x+2截得的线段长为_____.
13.已知点与点关于原点对称,则__________.
14.已知线段是线段和的比例中项,且、的长度分别为2和8,则的长度为_________.
15.在平面坐标系中,第1个正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作第2个正方形,延长交轴于点;作第3个正方形,…按这样的规律进行下去,第5个正方形的边长为__________.
16.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为,则可列方程为____.
17.如图,抛物线y=﹣x2+2x+k与x轴交于A,B两点,交y轴于点C,则点B的坐标是_____;点C的坐标是_____.
18.如图,将一个顶角为30°角的等腰△ABC绕点A顺时针旋转一个角度α(0<α<180°)得到△AB'C′,使得点B′、A、C在同一条直线上,则α等于_____°.
三、解答题(共66分)
19.(10分)在,,.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当时,的值是 ,直线BD与直线CP相交所成的较小角的度数是 .
(2)类比探究
如图2,当时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.
(3)解决问题
当时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.
20.(6分)台州人民翘首以盼的乐清湾大桥于2018年9月28日正式通车,经统计分析,大桥上的车流速度(千米/小时)是车流密度(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米/小时,研究证明:当时,车流速度是车流密度的一次函数.
(1)求大桥上车流密度为50/辆千米时的车流速度;
(2)在某一交通高峰时段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?
(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量车流速度车流密度,求大桥上车流量的最大值.
21.(6分)如图,的内接四边形两组对边的延长线分别相交于点、.
(1)若时,求证:;
(2)若时,求的度数.
22.(8分)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体看成一点的路线是抛物线的一部分,如图所示.
求演员弹跳离地面的最大高度;
已知人梯高米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
23.(8分)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)
(1)试写出与之间的函数关系式;
(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?
24.(8分)如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE= .
25.(10分)今年我县为了创建省级文明县城,全面推行中小学校“社会主义核心价值观”进课堂.某校对全校学生进行了检测评价,检测结果分为(优秀)、(良好)、(合格)、(不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行数据处理,制作了如下所示不完整的统计表和统计图.
请根据统计表和统计图提供的信息,解答下列问题:
(1)本次随机抽取的样本容量为__________;
(2)统计表中_________,_________.
(3)若该校共有学生5000人,请你估算该校学生在本次检测中达到“(优秀)”等级的学生人数.
26.(10分)如图,点A(1,m2)、点B(2,m﹣1)是函数y=(其中x>0)图象上的两点.
(1)求点A、点B的坐标及函数的解析式;
(2)连接OA、OB、AB,求△AOB的面积.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、C
4、C
5、D
6、B
7、B
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、
12、1
13、1
14、4
15、
16、
17、 (﹣1,1) (1,3)
18、1°
三、解答题(共66分)
19、(1)1,(2)45°(3),
20、(1)车流速度68千米/小时;(2)应把大桥上的车流密度控制在20千米/小时到70千米/小时之间;(3)车流量y取得最大值是每小时4840辆
21、(1)证明见解析;(2)48°.
22、 (1) ;(2)能成功;理由见解析.
23、(1);(2)当销售单价为180元,年获利最大,并且第一年年底公司亏损了,还差40万元就可收回全部投资.
24、(1)见解析;(2)1.
25、(1)100;(2)30,0.3;(3)1500人
26、(1)A(1,2),B(2,1),函数的解析式为y=;(2)
相关试卷
这是一份杭州市建兰中学2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列事件中,是随机事件的是等内容,欢迎下载使用。
这是一份兴安市重点中学2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了同桌读了等内容,欢迎下载使用。
这是一份2023-2024学年江苏省南通中学数学九年级第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。