2023-2024学年合肥市寿春中学数学九年级第一学期期末质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.数据1,3,3,4,5的众数和中位数分别为( )
A.3和3B.3和3.5C.4和4D.5和3.5
2.若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为( )
A.2:1B.1:2C.4:1D.1:4
3.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是( )
A.28(1-2x)=16B.16(1+2x)=28C.28(1-x)2=16D.16(1+x)2=28
4.若二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,则c应满足的条件是( )
A.c=0B.c=1C.c=0或c=1D.c=0或c=﹣1
5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,与x轴交于A、B(-1,0),与y轴交于C.下列结论错误的是( )
A.二次函数的最大值为a+b+cB.4a-2b+c﹤0
C.当y>0时,-1﹤x﹤3D.方程ax2+bx+c=-2解的情况可能是无实数解,或一个解,或二个解.
6.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在( )
A.的三边高线的交点处
B.的三角平分线的交点处
C.的三边中线的交点处
D.的三边中垂线线的交点处
7.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()
A.4个B.3个C.2个D.1个
8.如图,的外切正六边形的边长为2,则图中阴影部分的面积为( )
A.B.C.D.
9.用配方法解方程x2+4x+1=0时,方程可变形为 ( )
A.B.C.D.
10.在中,,,若,则的长为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,在平面直角坐标系中,CO、CB是⊙D的弦,⊙D分别与轴、轴交于B、A两点,∠OCB=60º,点A的坐标为(0,1),则⊙D的弦OB的长为____________。
12.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米
13.如图把沿边平移到的位置,它们的重叠部分(即图中阴影部分)的面积是面积的三分之一,若,则点平移的距离是__________
14.如图,在中,,,,、分别是边、上的两个动点,且,是的中点,连接,,则的最小值为__________.
15.如图,一架长为米的梯子斜靠在一竖直的墙上,这时测得,如果梯子的底端外移到,则梯子顶端下移到,这时又测得,那么的长度约为______米.(,,,)
16.小慧准备给妈妈打个电话,但她只记得号码的前位,后三位由,,这三个数字组成,具体顺序忘记了,则她第一次试拨就拨通电话的概率是________.
17.cs30°+sin45°+tan60°=_____.
18.如图,在直角三角形中,,是边上一点,以为边,在上方作等腰直角三角形,使得,连接.若,,则的最小值是_______.
三、解答题(共66分)
19.(10分)已知关于的一元二次方程 有实根.
(1)求的取值范围;
(2)求该方程的根.
20.(6分)如图,在中,点在斜边上,以为圆心,为半径作圆,分别与、相交于点、,连接,已知.
(1)求证:是的切线;
(2)若,,求劣弧与弦所围阴影图形的面积;
(3)若,,求的长.
21.(6分)如图,⊙O是Rt△ABC的外接圆,直径AB=4,直线EF经过点C,AD⊥EF于点D,∠ACD=∠B.
(1)求证:EF是⊙O的切线;
(2)若AD=1,求BC的长;
(3)在(2)的条件下,求图中阴影部分的面积.
22.(8分)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm. 点P从点A出发,沿AB边以2 cm/s的速度向点B匀速移动;点Q从点B出发,沿BC边以1 cm/s的速度向点C匀速移动, 当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t(s).
(1)当PQ∥AC时,求t的值;
(2)当t为何值时,△PBQ的面积等于cm 2.
23.(8分)已知,如图,△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.
24.(8分)(1)用配方法解方程:;
(2)用公式法解方程:.
25.(10分)如图,直线分别交轴于A、C,点P是该直线与反比例函数在第一象限内的一个交点,PB⊥轴于B,且S△ABP=1.
(1)求证:△AOC∽△ABP;
(2)求点P的坐标;
(3)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥轴于T,当△BRT与△AOC相似时,求点R的坐标.
26.(10分)如图1,抛物线的顶点为点,与轴的负半轴交于点,直线交抛物线W于另一点,点的坐标为.
(1)求直线的解析式;
(2)过点作轴,交轴于点,若平分,求抛物线W的解析式;
(3)若,将抛物线W向下平移个单位得到抛物线,如图2,记抛物线的顶点为,与轴负半轴的交点为,与射线的交点为.问:在平移的过程中,是否恒为定值?若是,请求出的值;若不是,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、C
4、C
5、D
6、D
7、B
8、A
9、C
10、A
二、填空题(每小题3分,共24分)
11、
12、
13、
14、
15、
16、
17、
18、
三、解答题(共66分)
19、(1);(2)
20、(1)见解析;(2);(3)
21、(1)见解析;(2);(3)
22、(1)t=;(2)当t为2s或3s时,△PBQ的面积等于cm 2.
23、证明见解析
24、(1);;(2);
25、(1)详见解析;(2)P为(2,3);(3)R()或(3,0)
26、(1);(2);(3)恒为定值.
安徽省合肥市寿春中学2023-2024学年七年级上学期末数学试题(含答案): 这是一份安徽省合肥市寿春中学2023-2024学年七年级上学期末数学试题(含答案),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年安徽省合肥市滨湖区寿春中学数学九上期末达标测试试题含答案: 这是一份2023-2024学年安徽省合肥市滨湖区寿春中学数学九上期末达标测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列图象能表示y是x的函数的是等内容,欢迎下载使用。
2023-2024学年北京四中学数学九年级第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年北京四中学数学九年级第一学期期末质量检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。