2023-2024学年四川省安岳县联考九上数学期末经典试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,点O为正五边形ABCDE外接圆的圆心,五边形ABCDE的对角线分别相交于点P,Q,R,M,N.若顶角等于36°的等腰三角形叫做黄金三角形,那么图中共有( )个黄金三角形.
A.5B.10C.15D.20
2.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是
A.B.C.D.
3.如图,为的直径,,为上的两点.若,,则的度数是( )
A.B.C.D.
4.下列函数中是反比例函数的是( )
A.B.C.D.
5.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的两个根为x1=0,x1=﹣4,其中正确的结论有( )
A.1个B.3个C.4个D.5个
6.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )
A.70°B.65°C.60°D.55°
7.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:
①点C的坐标为(0,m);
②当m=0时,△ABD是等腰直角三角形;
③若a=-1,则b=4;
④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.
其中结论正确的序号是( )
A.①②B.①②③C.①②④D.②③④
8.如图,在Rt△ABC内有边长分别为a,b,c的三个正方形.则a、b、c满足的关系式是( )
A.b=a+cB.b=acC.b2=a2+c2D.b=2a=2c
9.已知一个正多边形的一个外角为锐角,且其余弦值为,那么它是正( )边形.
A.六B.八C.十D.十二
10.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为( )
A.50(1+x)2=175B.50+50(1+x)2=175
C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=175
二、填空题(每小题3分,共24分)
11.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.
12.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论中:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.正确的结论序号是_____.﹙直角填写正确的结论的序号﹚.
13.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_____
14.如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=_____度.
15.已知扇形的圆心角为,所对的弧长为,则此扇形的面积是________.
16.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为_____.
17.是方程的解,则的值__________.
18.方程的解是_______.
三、解答题(共66分)
19.(10分)若方程(m-2)+(3-m)x-2=0是关于x的一元二次方程,试求代数式m2+2m-4的值.
20.(6分)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
21.(6分)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.
⑴求证:BE是⊙O的切线;
⑵若BC=,AC=5,求圆的直径AD的长.
22.(8分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.
(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;
(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.
23.(8分)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cs75°≈0.26,).
24.(8分)如图,在平面直角坐标系中,直线与函数的图象交于,两点,且点的坐标为.
(1)求的值;
(2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点.
①当时,求线段的长;
②若,结合函数的图象,直接写出的取值范围.
25.(10分)大雁塔是现存最早规模最大的唐代四方楼阁式砖塔,被国务院批准列人第一批全国重点文物保护单位,某校社会实践小组为了测量大雁塔的高度,在地面上处垂直于地面竖立了高度为米的标杆,这时地面上的点,标杆的顶端点,古塔的塔尖点正好在同一直线上,测得米,将标杆向后平移到点处,这时地面上的点,标杆的顶端点,古塔的塔尖点正好在同一直线上(点,点,点,点与古塔底处的点在同一直线上) ,这时测得米,米,请你根据以上数据,计算古塔的高度.
26.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于、两点,与轴交于点.
(1)求反比例函数的表达式及点坐标;
(2)请直接写出当为何值时,;
(3)求的面积.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、B
4、B
5、C
6、B
7、C
8、A
9、B
10、D
二、填空题(每小题3分,共24分)
11、
12、①③④
13、70°或120°
14、1
15、
16、x1=2,x2=1
17、
18、
三、解答题(共66分)
19、-4
20、(1)图见解析,y=-10x+1;(2)单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元;(3)单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.
21、(1)详见解析;(2)1
22、(1);(2)
23、该台灯照亮水平面的宽度BC大约是67.1cm.
24、(1);(2)①;②或
25、古塔的高度为64.5米.
26、(1), ;(2)或;(3)1.
销售单价x(元/件)
…
30
40
50
60
…
每天销售量y(件)
…
500
400
300
200
…
四川省泸县联考2023-2024学年九上数学期末经典试题含答案: 这是一份四川省泸县联考2023-2024学年九上数学期末经典试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是等内容,欢迎下载使用。
吉林省长白县联考2023-2024学年九上数学期末经典试题含答案: 这是一份吉林省长白县联考2023-2024学年九上数学期末经典试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,关于x的一元二次方程x2﹣,如图,在平行四边形中等内容,欢迎下载使用。
山东省无棣县联考2023-2024学年九上数学期末经典模拟试题含答案: 这是一份山东省无棣县联考2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,点P在双曲线上,则k的值为,sin60°的值是等内容,欢迎下载使用。