2023-2024学年四川省威远县九上数学期末复习检测模拟试题含答案
展开
这是一份2023-2024学年四川省威远县九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.小亮同学在教学活动课中,用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是( )
A.线段B.三角形C.平行四边形D.正方形
2.如图,已知BD是⊙O直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC的度数是( )
A.20°B.25°C.30°D.40°
3.方程x2﹣6x+5=0的两个根之和为( )
A.﹣6B.6C.﹣5D.5
4.如图,在正方形中,绕点顺时针旋转后与重合,,,则的长度为( )
A.4B.C.5D.
5.在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则csα的值为( )
A.B.C.D.
6.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在( )
A.点C1处B.点C2处C.点C3处D.点C4处
7.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A.B.
C.D.
8.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有( )
A.1个B.2个C.3个D.4个
9.如图,在平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2,则下列说法正确的是( )
A.A1的坐标为(3,1)B.S四边形ABB1A1=3C.B2C=2D.∠AC2O=45°
10.如图,点在以为直径的上,若,,则的长为( )
A.8B.6C.5D.
二、填空题(每小题3分,共24分)
11.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)为______.
12.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为_____.
13.在正方形网格中,△ABC的位置如图所示,则sinB的值为 ______________
14.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是______米.
15.如图在Rt△OAB中∠AOB=20°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=____.
16.如图,若点P在反比例函数y=﹣(x<0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则矩形PMON的面积为_____.
17.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.
18.用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为__________.
三、解答题(共66分)
19.(10分)如图,在正方形中,点在边上,过点作于,且.
(1)若,求正方形的周长;
(2)若,求正方形的面积.
20.(6分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°, 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?
21.(6分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.
(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;
(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;
(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.
22.(8分)已知二次函数y=(x-1)2+n的部分点坐标如下表所示:
(1)求该二次函数解析式;
(2)完成上表,并在平面直角坐标系中画出函数图象
23.(8分)网络比网络的传输速度快10倍以上,因此人们对产品充满期待.华为集团计划2020年元月开始销售一款产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第个月(为正整数)销售价格为元/台,与满足如图所示的一次函数关系:且第个月的销售数量(万台)与的关系为.
(1)该产品第6个月每台销售价格为______元;
(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?
(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?
(4)若每销售1万台该产品需要在销售额中扣除元推广费用,当时销售利润最大值为22500万元时,求的值.
24.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?
(2)当Rt△ABC的斜边a=,且两条直角边的长b和c恰好是这个方程的两个根时,求k的值.
25.(10分)已知二次函数的图象顶点是, 且经过,求这个二次函数的表达式.
26.(10分)某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为万元/辆,经销一段时间后发现:当该型号汽车售价定为万元/辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.
(1)当售价为万元/辆时,平均每周的销售利润为___________万元;
(2)若该店计划平均每周的销售利润是万元,为了尽快减少库存,求每辆汽车的售价.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、B
4、D
5、A
6、D
7、A
8、B
9、D
10、D
二、填空题(每小题3分,共24分)
11、
12、x1=2,x2=1
13、
14、1.
15、80°.
16、1
17、y=﹣(x﹣1)1+1
18、
三、解答题(共66分)
19、(1);(2).
20、(20+17)cm.
21、(1)BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由见解析;(3)AP=AM+PM=3.
22、(1)y=(x-1)2+1;(2)填表见解析,图象见解析.
23、(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4).
24、(1)见解析;(2)1
25、
26、(1) (2)万元
相关试卷
这是一份四川省泸州泸县2023-2024学年九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中是必然事件的是等内容,欢迎下载使用。
这是一份北京市清华附中2023-2024学年九上数学期末复习检测模拟试题含答案,共9页。试卷主要包含了若两个相似三角形的相似比是1等内容,欢迎下载使用。
这是一份2023-2024学年四川省华蓥市第一中学九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了2020的相反数是,抛物线的顶点坐标为,在中,,,则的值为,的值等于等内容,欢迎下载使用。