2023-2024学年山东省济南市济阳县数学九年级第一学期期末监测模拟试题含答案
展开
这是一份2023-2024学年山东省济南市济阳县数学九年级第一学期期末监测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,则的值为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图所示的工件,其俯视图是( )
A.B.C.D.
2.在直角梯形ABCD中,AD//BC,∠B=90º,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论:①DE⊥EC;②点E是AB的中点;③AD∙BC=BE∙DE;④CD=AD+BC.其中正确的有( )
A.①②③B.②③④C.①②④D.①③④
3.若抛物线与坐标轴有一个交点,则的取值范围是( )
A.B.C.D.
4.在Rt△ABC中,∠C=90°,若AC=4,AB=5,则csB的值( )
A.B.C.D.
5.在中,,,则的值为( )
A.B.C.D.
6.一个盒子装有红、黄、白球分别为2、3、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是( )
A.B.C.D.
7.若双曲线经过第二、四象限,则直线经过的象限是( )
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
8.二次函数的图象如图所示,其对称轴为,有下列结论:①;②;③;④对任意的实数,都有,其中正确的是( )
A.①②B.①④C.②③D.②④
9.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为( )
A.m≥B.m<C.m=D.m<﹣
10.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E,如图所示.若测得BE=90 m,EC=45 m,CD=60 m,则这条河的宽AB等于( )
A.120 mB.67.5 mC.40 mD.30 m
二、填空题(每小题3分,共24分)
11.如图,在中,点分别是边上的点,, 则的长为________.
12.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:__________.
13.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高______
14.如图,把小圆形场地的半径增加5米得到大圆形场地,场地面积扩大了一倍.则小圆形场地的半径是______米.
15.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)
16.计算sin245°+cs245°=_______.
17.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为_____米.
18.如果关于的一元二次方程的一个根是则_______________________.
三、解答题(共66分)
19.(10分)计算:|1﹣|+.
20.(6分)平行四边形中,点为上一点,连接交对角线于点,点为上一点,于,且,点为的中点,连接;若.
(1)求的度数;
(2)求证:
21.(6分)如图,已知是的直径,是的弦,点在外,连接,的平分线交于点.
(1)若,求证:是的切线;
(2)若,,求弦的长.
22.(8分)游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离.
(1)求反比例函数的关系式及其自变量的取值范围;
(2)求整条滑道的水平距离;
(3)若小明站在平台上相距y轴的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.
23.(8分)如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B(4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.
24.(8分)如图,直线y=k1x+b与双曲线y=交于点A(1,4),点B(3,m).
(1)求k1与k2的值;
(2)求△AOB的面积.
25.(10分)材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.
图1
图2
材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10 m,间距AB为32 m,桥面AB水平,主索最低点为点P,点P距离桥面为2 m;
图3
为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如下图:
甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;
乙同学:以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;
丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.
(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;
(2)距离点P水平距离为4 m和8 m处的吊索共四条需要更换,则四根吊索总长度为多少米?
26.(10分)某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:
(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:
表中数据a= ,b= ,c= .
(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、A
4、B
5、C
6、D
7、C
8、B
9、B
10、A
二、填空题(每小题3分,共24分)
11、1
12、
13、8m
14、
15、
16、1
17、11.1
18、
三、解答题(共66分)
19、1.
20、(1)30° (2)证明见解析
21、(1)证明见解析;(2).
22、(1),;(2)7m;(3).
23、点C坐标为(2,2),y=
24、(1)k1与k2的值分别为﹣,4;(2)
25、(1)甲,C(16,0),主索抛物线的表达式为;(2)四根吊索的总长度为13m;
26、解:(1)a=135,b=134.5,c=1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.
相关试卷
这是一份山东省济南市历下区2023-2024学年九上数学期末监测模拟试题含答案,共7页。试卷主要包含了以为顶点的二次函数是,一元二次方程配方后可化为等内容,欢迎下载使用。
这是一份山东省济南市济阳县2023-2024学年九上数学期末调研试题含答案,共8页。试卷主要包含了下列运算中,计算结果正确的是,当函数是二次函数时,a的取值为,一5的绝对值是等内容,欢迎下载使用。
这是一份2023-2024学年山东省济南市商河县九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了解方程,选择最适当的方法是等内容,欢迎下载使用。