2023-2024学年山东省烟台市芝罘区数学九上期末联考试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如图,两个菱形,两个等边三角形,两个矩形,两个正方形,各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是( )
A.B.C.D.
2.抛物线的顶点坐标是
A.B.C.D.
3.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A.①②③④B.①④C.②③④D.①②③
4.如图,在△ABO中,∠B=90º ,OB=3,OA=5,以AO上一点P为圆心,PO长为半径的圆恰好与AB相切于点C,则下列结论正确的是( ).
A.⊙P 的半径为
B.经过A,O,B三点的抛物线的函数表达式是
C.点(3,2)在经过A,O,B三点的抛物线上
D.经过A,O,C三点的抛物线的函数表达式是
5.掷一枚质地均匀的骰子,骰子停止后,在下列四个选项中,可能性最大的是( )
A.点数小于4B.点数大于4C.点数大于5D.点数小于5
6.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是( )
A.先向左平移2个单位长度,然后向上平移1个单位长度
B.先向左平移2个单位长度,然后向下平移1个单位长度
C.先向右平移2个单位长度,然后向上平移1个单位长度
D.先向右平移2个单位长度,然后向下平移1个单位长度
7.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为( )
A.70°B.65°C.55°D.45°
8.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1
A.0,4B.-3,5C.-2,4D.-3,1
10.在反比例函数的图象的每个象限内,y随x的增大而增大,则k值可以是( )
A.-1B.1C.2D.3
二、填空题(每小题3分,共24分)
11.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).
12.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.
13.计算:|﹣3|﹣sin30°=_____.
14.若=,则的值为________.
15.关于x的方程x2﹣3x﹣m=0的两实数根为x1,x2,且,则m的值为_____.
16.一元二次方程(x﹣1)2=1的解是_____.
17.如图,正方形的边长为8,点在上,交于点.若,则长为__.
18.若方程有两个相等的实数根,则m=________.
三、解答题(共66分)
19.(10分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为多少步.
20.(6分)解方程:x2﹣4x﹣5=1.
21.(6分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.
(1)请在图1中再找出一对这样的角来: = .
(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF对角线的交点,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.
(3)在第(2)题的条件下,若此时AB=6,BD=8,求BC的长.
22.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求小黄出发0.5小时时,离家的距离;
(2)求出AB段的图象的函数解析式;
(3)小黄出发1.5小时时,离目的地还有多少千米?
23.(8分)如图,在8×8的正方形网格中,△AOB的顶点都在格点上.请在网格中画出△OAB的一个位似图形,使两个图形以点O为位似中心,且所画图形与△OAB的位似为2:1.
24.(8分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.
(1)求反比例函数的解析式;
(2)若点P在x轴上,且的面积为5,求点P的坐标.
25.(10分)已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.
(1)求抛物线的解析式和,两点的坐标;
(2)如图,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由.
26.(10分)如图,已知点D是的边AC上的一点,连接,,.
求证:∽;
求线段CD的长.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、D
4、D
5、D
6、D
7、C
8、B
9、B
10、A
二、填空题(每小题3分,共24分)
11、1.2
12、
13、
14、
15、-1.
16、x=2或0
17、6
18、4
三、解答题(共66分)
19、
20、x=﹣1或x=2.
21、(1)∠ABD=∠ACD(或∠DAC=∠DBC );(2)四边形ACEF为正方形,理由见解析;(3)1
22、(1)2千米;(2)y=90x﹣24(0.8≤x≤2);(3)3千米
23、答案见解析.
24、(1) (2)P的坐标为或
25、(1)抛物线的解析式为:;点的坐标为,点的坐标为;(2)存在点,使四边形的面积最大;点的坐标为,四边形面积的最大值为32.
26、(1)参见解析;(2)1.
种子粒数
100
400
800
1 000
2 000
5 000
发芽种子粒数
85
318
652
793
1 604
4 005
发芽频率
0.850
0.795
0.815
0.793
0.802
0.801
09,山东省烟台市芝罘区2023-2024学年八年级上学期期末数学试题: 这是一份09,山东省烟台市芝罘区2023-2024学年八年级上学期期末数学试题,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年山东省烟台市芝罘区七年级(上)期末数学试卷(五四学制)(含解析): 这是一份2023-2024学年山东省烟台市芝罘区七年级(上)期末数学试卷(五四学制)(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省烟台市2023-2024学年九上数学期末监测试题含答案: 这是一份山东省烟台市2023-2024学年九上数学期末监测试题含答案,共9页。