2023-2024学年广东省东莞市虎门外语学校数学九年级第一学期期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,四边形ABCD是正方形,以BC为底边向正方形外部作等腰直角三角形BCE,连接AE,分别交BD,BC于点F,G,则下列结论:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正确的有( ).
A.①③B.②④C.①②D.③④
2.小明使用电脑软件探究函数的图象,他输入了一组,的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的,的值满足( )
A.,B.,C.,D.,
3.如果反比例函数y=的图象经过点(﹣5,3),则k=( )
A.15B.﹣15C.16D.﹣16
4.桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是( )
A.B.C.D.
5.下列说法正确的是( )
A.“概率为1.1111的事件”是不可能事件
B.任意掷一枚质地均匀的硬币11次,正面向上的一定是5次
C.“任意画出一个等边三角形,它是轴对称图形”是随机事件
D.“任意画出一个平行四边行,它是中心对称图形”是必然事件
6.钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m2,数据4400000用科学记数法表示为( )
A.4.4×106B.44×105C.4×106D.0.44×107
7.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为( )
A.57°B.66°C.67°D.44°
8.下面四个手机应用图标中是轴对称图形的是( )
A.B.C.D.
9.下列图形中,既是轴对称图形又是中心对称图形的是
A.B.C.D.
10.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=( )
A.60°B.65°C.70°D.80°
二、填空题(每小题3分,共24分)
11.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .
12.如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为_____.
13.在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同.小华通过多次试验后发现,从盒子中摸出红球的频率是15%,摸出白球的频率是45%,那么可以估计盒子中黄球的个数是_____.
14.如图,已知⊙O的半径为2,四边形ABCD是⊙O的内接四边形,∠ABC=∠AOC,且AD=CD,则图中阴影部分的面积等于______.
15.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.
16.如图,、、均为⊙的切线,分别是切点,,则的周长为____.
17.方程2x2-x=0的根是______.
18.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.
三、解答题(共66分)
19.(10分)已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).
(1)求该二次函数的解析式;
(2)判断点C(2,﹣3),D(﹣1,1)是否在该函数图象上,并说明理由.
20.(6分)某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与每天销售量y(件)之间的关系如下表.
(1)直接写出:y与x之间的函数关系 ;
(2)按照这样的销售规律,设每天销售利润为w(元)即(销售单价﹣成本价)x每天销售量;求出w(元)与销售单价x(元/件)之间的函数关系;
(3)销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
21.(6分)有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.
下面是小彤探究的过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值:
则m的值为 ;
(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;
(4)观察图象,写出该函数的一条性质 ;
(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为 ;
22.(8分)如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若DC=2,AC=4,求OE的长.
23.(8分)作出函数y=2x2的图象,并根据图象回答下列问题:
(1)列表:
(2)在下面给出的正方形网格中建立适当的平面直角坐标系,描出列表中的各点,并画出函数y=2x2的图象:
(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是 (直接写出结论).
24.(8分)如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.
(1)判断直线AC与⊙O的位置关系,并说明理由;
(2)当BD=6,AB=10时,求⊙O的半径.
25.(10分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.
(1)表中m=__________,n=____________;
(2)请在图中补全频数直方图;
(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;
(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.
26.(10分)用配方法解方程:﹣3x2+2x+1=1.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、D
4、A
5、D
6、A
7、A
8、D
9、D
10、D
二、填空题(每小题3分,共24分)
11、y3>y1>y2.
12、或14
13、1
14、π﹣
15、
16、1
17、x1=, x2=0
18、100(1+x)2=1.
三、解答题(共66分)
19、(1);(2)C在,D不在,见解析
20、(1)y=﹣10x+1;(2)w=﹣10x2+500x﹣10;(3)销售单价定为 25 元时,每天销售利润最大,最大销售利润 2250 元.
21、 (1)x≠3;(2);(3)详见解析;(4)当x>3时y随x的增大而减小等(答案不唯一);(5)<<
22、(1)证明见解析;(2)1.
23、(1)见解析;(2)见解析;(3)
24、(1)(1)AC与⊙O相切,证明见解析;(2)⊙O半径是.
25、 (1)8,0.35;(2)见解析;(3)89.5~94.5;(4).
26、或
x(元/件)
15
18
20
22
…
y(件)
250
220
200
180
…
x
…
﹣2
﹣1
0
1
2
4
5
6
7
8
…
y
…
m
0
﹣1
3
2
…
x
…
…
y
…
…
分数段
频数
频率
74.5~79.5
2
0.05
79.5~84.5
m
0.2
84.5~89.5
12
0.3
89.5~94.5
14
n
94.5~99.5
4
0.1
广东省东莞市虎门外语学校2023-2024学年九年级上学期期末数学试题: 这是一份广东省东莞市虎门外语学校2023-2024学年九年级上学期期末数学试题,共24页。试卷主要包含了3/份2等内容,欢迎下载使用。
48,广东省东莞市虎门外语学校2023-2024学年九年级上学期期末数学试题(): 这是一份48,广东省东莞市虎门外语学校2023-2024学年九年级上学期期末数学试题(),共6页。试卷主要包含了3/份等内容,欢迎下载使用。
82, 广东省东莞市虎门外语学校2023-2024学年上学期九年级数学期末测试题: 这是一份82, 广东省东莞市虎门外语学校2023-2024学年上学期九年级数学期末测试题,共4页。