2023-2024学年山西省朔州市名校九上数学期末综合测试模拟试题含答案
展开
这是一份2023-2024学年山西省朔州市名校九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知点等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x,则可以列方程为( )
A.B.
C.D.
2.等腰三角形底边长为10,周长为36,则底角的余弦值等于( )
A.B.C.D.
3.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.
①四边形ACED是平行四边形;
②△BCE是等腰三角形;
③四边形ACEB的周长是;
④四边形ACEB的面积是1.
则以上结论正确的是( )
A.①②B.②④C.①②③D.①③④
4.如果两个相似三角形对应边之比是,那么它们的对应中线之比是( )
A.1:3B.1:4C.1:6D.1:9
5.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是( )
A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2
6.已知Rt△ABC中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( )
A.;B.;C.;D.以上都不对;
7.已知抛物线经过和两点,则n的值为( )
A.﹣2B.﹣4C.2D.4
8.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )
A.12.5°B.15°C.20°D.22.5°
9.如图显示了用计算机模拟随机投掷一枚图钉的实验结果.随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是( )
A.0.620B.0.618C.0.610D.1000
10.反比例函数y=和一次函数y=kx-k在同一坐标系中的图象大致是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.
12.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_____.
13.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.
14.如图,已知⊙O的半径为1,AB,AC是⊙O的两条弦,且AB=AC,延长BO交AC于点D,连接OA,OC,若AD2=AB•DC,则OD=__.
15.分解因式:___.
16.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .
17.如图,点是矩形中边上一点,将沿折叠为,点落在边上,若,,则________.
18.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为 cm.(结果保留π)
三、解答题(共66分)
19.(10分)天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿A﹣B﹣C路线对索道进行检修维护.如图:已知米,米,AB与水平线的夹角是,BC与水平线的夹角是.求:本次检修中,检修人员上升的垂直高度是多少米?(结果精确到1米,参考数据:)
20.(6分)2019年11月5日,第二届中国国际进口博览会(The 2nd China Internatinal lmprt Exp)在上海国家会展中心开幕.本次进博会将共建开放合作、创新共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:.中国馆;.俄罗斯馆;.法国馆;.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观,每个国家馆被选择的可能性相同.
(1)求小滕选择.中国馆的概率;
(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率.
21.(6分)如图1,已知中,,,,它在平面直角坐标系中位置如图所示,点在轴的负半轴上(点在点的右侧),顶点在第二象限,将沿所在的直线翻折,点落在点位置
(1)若点坐标为时,求点的坐标;
(2)若点和点在同一个反比例函数的图象上,求点坐标;
(3)如图2,将四边形向左平移,平移后的四边形记作四边形,过点的反比例函数的图象与的延长线交于点,则在平移过程中,是否存在这样的,使得以点为顶点的三角形是直角三角形且点在同一条直线上?若存在,求出的值;若不存在,请说明理由
22.(8分)为了改善生活环境,近年来,无为县政府不断加大对城市绿化的资金投入,使全县绿地面积不断增加.从2016年底到2018年底,我县绿地面积变化如图所示,求我县绿地面积的年平均增长率.
23.(8分)如图,已知直线与轴交于点,与反比例函数的图象交于,两点,的面积为.
(1)求一次函数的解析式;
(2)求点坐标和反比例函数的解析式.
24.(8分)如图,已知四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与CD相切于点D,点B在⊙O上,连接OB.
(1)求证:DE=OE;
(2)若CD∥AB,求证:BC是⊙O的切线.
25.(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形.的顶点均在格点上,建立平面直角坐标系后,点的坐标为,点的坐标为.
(1)先将向右平移5个单位,再向下平移1个单位后得到.试在图中画出图形,并写出的坐标;
(2)将绕点顺时针旋转后得到,试在图中画出图形.并计算在该旋转过程中扫过部分的面积.
26.(10分)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)
(1)试写出与之间的函数关系式;
(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、A
4、A
5、B
6、C
7、B
8、B
9、B
10、C
二、填空题(每小题3分,共24分)
11、1
12、
13、
14、.
15、.
16、300π
17、5
18、8π
三、解答题(共66分)
19、检修人员上升的垂直高度为943米.
20、(1);(2).
21、(1);(2);(3)存在,或
22、年平均增长率为10%.
23、(1)(1);
24、(1)详见解析;(2)详见解析
25、(1)见解析,的坐标为; (2)见解析,
26、(1);(2)当销售单价为180元,年获利最大,并且第一年年底公司亏损了,还差40万元就可收回全部投资.
相关试卷
这是一份山西省朔州市名校2023-2024学年数学九上期末学业质量监测模拟试题含答案,共8页。
这是一份陕西省咸阳市名校2023-2024学年九上数学期末综合测试模拟试题含答案,共7页。试卷主要包含了方程等内容,欢迎下载使用。
这是一份山西省运城市名校2023-2024学年九上数学期末统考模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图的几何体,它的主视图是,-4的相反数是,下图中几何体的左视图是,下列说法正确的是等内容,欢迎下载使用。