2023-2024学年山西省阳泉市城区数学九年级第一学期期末经典模拟试题含答案
展开
这是一份2023-2024学年山西省阳泉市城区数学九年级第一学期期末经典模拟试题含答案,共8页。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.若将抛物线y=2(x+4)2﹣1平移后其顶点落y在轴上,则下面平移正确的是( )
A.向左平移4个单位B.向右平移4个单位
C.向上平移1个单位D.向下平移1个单位
2.如图,已知一次函数 y=kx-2 的图象与 x 轴、y 轴分别交于 A,B 两点,与反比例函数的图象交于点 C,且 AB=AC,则 k 的值为( )
A.1B.2C.3D.4
3.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为
A.12B.9C.6D.4
4.不透明袋子中有个红球和个蓝球,这些球除颜色外无其他差别,从袋子中随机取出个球是红球的概率是( )
A.B.C.D.
5.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )
A.B.C.2D.
6.如图,矩形ABCD是由三个全等矩形拼成的,AC与DE、EF、FG、HG、HB分别交于点P、Q、K、M、N,设△EPQ、△GKM、△BNC的面积依次为S1、S2、S1.若S1+S1=10,则S2的值为( ).
A.6B.8
C.10D.12
7.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172,方差为,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172,此时全班同学身高的方差为,那么与的大小关系是( )
A.B.C.D.无法判断
8.三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为( )
A.11B.15C.11或15D.不能确定
9.若正六边形的边长为6,则其外接圆半径为( )
A.3B.3C.3D.6
10.下列四幅图案,在设计中用到了中心对称的图形是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.
12.已知正六边形ABCDEF的边心距为cm,则正六边形的半径为________cm.
13.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)
14.如图,等腰直角三角形AOC中,点C在y轴的正半轴上,OC=AC=4,AC交反比例函数y=的图象于点F,过点F作FD⊥OA,交OA与点E,交反比例函数与另一点D,则点D的坐标为_____.
15.已知二次函数的图象与轴的一个交点为,则它与轴的另一个交点的坐标是__________.
16.如图,在中,、分别是、的中点,点在上,是的平分线,若,则的度数是________.
17.已知,则=____
18.如图,△ABC为⊙O的内接三角形,若∠OBA=55°,则∠ACB=_____.
三、解答题(共66分)
19.(10分)(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP= 时,△APB∽△ABC;
(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)
20.(6分)放寒假,小明的爸爸把油箱注满油后准备驾驶汽车到距家300的学校接小明,在接到小明后立即按原路返回,已知小明爸爸汽车油箱的容积为70,请回答下列问题:
(1)写出油箱注满油后,汽车能够行使的总路程与平均耗油量之间的函数关系式;
(2)小明的爸爸以平均每千米耗油0.1的速度驾驶汽车到达学校,在返回时由于下雨,小明的爸爸降低了车速,此时每千米的耗油量增加了一倍,如果小明的爸爸始终以此速度行使,油箱里的油是否够回到家?如果不够用,请通过计算说明至少还需加多少油?
21.(6分)如图,在△ABC中,AB=AC=10,∠B=30°,O是线段AB上的一个动点,以O为圆心,OB为半径作⊙O交BC于点D,过点D作直线AC的垂线,垂足为E.
(1)求证:DE是⊙O的切线;
(2)设OB=x,求∠ODE的内部与△ABC重合部分的面积y的最大值.
22.(8分)如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:
(1)设△APQ的面积为S,当t为何值时,S取得最大值,S的最大值是多少;
(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;
(3)当t为何值时,△APQ是等腰三角形.
23.(8分)解方程
24.(8分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.
(1)求证:BE=CE;
(2)若AB=6,求弧DE的长;
(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.
25.(10分)数学兴趣小组对矩形面积为9,其周长m的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.
(1)建立函数模型.
设矩形相邻两边的长分别为x,y,由矩形的面积为9,得xy=9,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第 象限内交点的坐标.
(2)画出函数图象.
函数y=(x>0)的图象如图所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到,请在同一直角坐标系中画出直线y=﹣x.
(3)平移直线y=﹣x,观察函数图象.
①当直线平移到与函数y=(x>0)的图象有唯一交点(3,3)时,周长m的值为 ;
②在直线平移过程中,直线与函数y=(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.
(4)得出结论
面积为9的矩形,它的周长m的取值范围为 .
26.(10分)在平面直角坐标系中,已知抛物线y1=x2﹣4x+4的顶点为A,直线y2=kx﹣2k(k≠0),
(1)试说明直线是否经过抛物线顶点A;
(2)若直线y2交抛物线于点B,且△OAB面积为1时,求B点坐标;
(1)过x轴上的一点M(t,0)(0≤t≤2),作x轴的垂线,分别交y1,y2的图象于点P,Q,判断下列说法是否正确,并说明理由:
①当k>0时,存在实数t(0≤t≤2)使得PQ=1.
②当﹣2<k<﹣0.5时,不存在满足条件的t(0≤t≤2)使得PQ=1.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、B
4、A
5、D
6、D
7、B
8、B
9、D
10、D
二、填空题(每小题3分,共24分)
11、6.1
12、1
13、大
14、 (4,)
15、
16、100°
17、1
18、35°
三、解答题(共66分)
19、(1);(2)见解析.
20、(1);(2)不够,至少要加油20L
21、 (1)证明见解析;(2)
22、 (1)当t为秒时,S最大值为;(1); (3)或或.
23、,.
24、(1)证明见解析;(2)弧DE的长为π;(3)当∠F的度数是36°时,BF与⊙O相切.理由见解析.
25、(1)一;(2)见解析;(3)①1;②0个交点时,m<1;1个交点时,m=1; 2个交点时,m>1;(4)m≥1.
26、(1)直线经过A点;(2)B(1,1)或B(1,1);(1)①正确,②正确.
相关试卷
这是一份山西省阳泉市2023-2024学年数学九年级第一学期期末调研试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如果反比例函数的图像经过点,二次函数y=ax1+bx+c等内容,欢迎下载使用。
这是一份山西省阳泉市平定县2023-2024学年数学九上期末经典模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,一元二次方程配方为等内容,欢迎下载使用。
这是一份2023-2024学年山西省阳泉市数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,某篮球队14名队员的年龄如表等内容,欢迎下载使用。