2023-2024学年广东省深圳市福田区上步中学九上数学期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,AB是⊙O的直径,弦CD交AB于点E,且E是CD的中点,∠CDB=30°,CD=6,则阴影部分面积为( )
A.πB.3πC.6πD.12π
2.已知反比例函数图像上三个点的坐标分别是,能正确反映的大小关系的是( )
A.B.C.D.
3.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于( )
A.55°B.70°C.110°D.125°
4.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是( )
A.B.C.D.2
5.一元二次方程的一次项系数和常数项依次是( )
A.和B.和C.和D.和
6.抛物线与y轴的交点坐标是( )
A.(4,0)B.(-4,0)C.(0,-4)D.(0,4)
7.图中的两个梯形成中心对称,点P的对称点是( )
A.点AB.点BC.点CD.点D
8.将一元二次方程x2-4x+3=0化成(x+m)2=n的形式,则n等于( )
A.-3B.1C.4D.7
9.如图,一艘快艇从O港出发,向东北方向行驶到A处,然后向西行驶到B处,再向东南方向行驶,共经过1小时到O港,已知快艇的速度是60km/h,则A,B之间的距离是( )
A.B.C.D.
10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.如图,的弦,半径交于点,是的中点,且,则的长为__________.
12.如图,在平面直角坐标系中,已知▱OABC的顶点坐标分别是O(0,0),A(3,0),B(4,2),C(1,2),以坐标原点O为位似中心,将▱OABC放大3倍,得到▱ODEF,则点E的坐标是_____.
13.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cs∠BDC=,则BC的长为_____.
14.如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,恰好能与△ACP′完全重合,如果AP=8,则PP′的长度为___________.
15.已知和是方程的两个实数根,则__________.
16.如图,抛物线解析式为y=x2,点A1的坐标为(1,1),连接OA1;过A1作A1B1⊥OA1,分别交y轴、抛物线于点P1、B1;过B1作B1A2⊥A1B1分别交y轴、抛物线于点P2、A2;过A2作A2B2⊥B1A2,分别交y轴、抛物线于点P3、B2…;则点Pn的坐标是_____.
17.若圆中一条弦长等于半径,则这条弦所对的圆周角的度数为______.
18.如图抛物线与轴交于,两点,与轴交于点,点是抛物线对称轴上任意一点,若点、、分别是、、的中点,连接,,则的最小值为_____.
三、解答题(共66分)
19.(10分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.
20.(6分)在平面直角坐标系中,对于点和实数,给出如下定义:当时,以点为圆心,为半径的圆,称为点的倍相关圆.
例如,在如图1中,点的1倍相关圆为以点为圆心,2为半径的圆.
(1)在点中,存在1倍相关圆的点是________,该点的1倍相关圆半径为________.
(2)如图2,若是轴正半轴上的动点,点在第一象限内,且满足,判断直线与点的倍相关圆的位置关系,并证明.
(3)如图3,已知点,反比例函数的图象经过点,直线与直线关于轴对称.
①若点在直线上,则点的3倍相关圆的半径为________.
②点在直线上,点的倍相关圆的半径为,若点在运动过程中,以点为圆心,为半径的圆与反比例函数的图象最多有两个公共点,直接写出的最大值.
21.(6分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.
(1)求抛物线的表达式;
(2)求△ABC的面积;
(3)抛物线的对称轴上是否存在点M,使得△ABM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.
22.(8分)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.
(1)求证:;
(2)若设AE=x,DH=y,当x取何值时,y有最大值?并求出这个最大值;
(3)连接BH,当点E运动到AD的何位置时有?
23.(8分)如图1,抛物线与x轴相交于点A、点B,与y轴交于点C(0,3),对称轴为直线x=1,交x轴于点D,顶点为点E.
(1)求该抛物线的解析式;
(2)连接AC,CE,AE,求△ACE的面积;
(3)如图2,点F在y轴上,且OF=,点N是抛物线在第一象限内一动点,且在抛物线对称轴右侧,连接ON交对称轴于点G,连接GF,若GF平分∠OGE,求点N的坐标.
24.(8分)如图,一次函数y=﹣x+5的图象与坐标轴交于A,B两点,与反比例函数y=的图象交于M,N两点,过点M作MC⊥y轴于点C,且CM=1,过点N作ND⊥x轴于点D,且DN=1.已知点P是x轴(除原点O外)上一点.
(1)直接写出M、N的坐标及k的值;
(2)将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由;
(3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以P、S、M、N四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S的坐标;若不存在,请说明理由.
25.(10分)如图,利用的墙角修建一个梯形的储料场,其中,并使,新建墙上预留一长为1米的门.如果新建墙总长为15米,那么怎样修建才能使储料场的面积最大?最大面积多少平方米?
26.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.
(1)画出△ABC绕点O顺时针旋转90°后的△A′B′C′.
(2)求点B绕点O旋转到点B′的路径长(结果保留π).
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、B
5、B
6、D
7、C
8、B
9、B
10、A
二、填空题(每小题3分,共24分)
11、2
12、(12,6)或(-12,-6)
13、4
14、
15、1
16、(0,n2+n)
17、30°或150°
18、
三、解答题(共66分)
19、12米
20、(1)解:,3(2)解:直线与点的倍相关圆的位置关系是相切. (3)①点的3倍相关圆的半径是3;②的最大值是.
21、(1)y=x2﹣x﹣4;(2)10;(3)存在,M1(,11),M2(,﹣),M3(,﹣2),M4(,﹣﹣2).
22、(1)见解析;(2)当,有最大值;(3)当点E是AD的中点
23、(1)y=-x2+2x+3;(2)1;(3)点N的坐标为:(,).
24、(1)M(1,4),N(4,1),k=4;(2)(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2);(3)(,5)或(,3).
25、当与垂直的墙长为米时,储料场面积最大值为平方米
26、(1)画图见解析;(2)点B绕点O旋转到点B′的路径长为.
广东省深圳市桃源中学2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份广东省深圳市桃源中学2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图所示,给出下列条件,抛物线如图所示,给出以下结论等内容,欢迎下载使用。
2023-2024学年广东省深圳市十校联考九上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年广东省深圳市十校联考九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了方程x2﹣9=0的解是,已知函数y=ax2-2ax-1等内容,欢迎下载使用。
广东省深圳市龙岗实验中学2023-2024学年八上数学期末达标检测试题含答案: 这是一份广东省深圳市龙岗实验中学2023-2024学年八上数学期末达标检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,分式方程=的解是等内容,欢迎下载使用。