2023-2024学年广西南宁市新民中学九年级数学第一学期期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,⊙是的外接圆,已知平分交⊙于点,交于点,若,,则的长为( )
A.B.C.D.
2.设抛物线的顶点为M ,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1 ( )
A.B.
C.D. (a为任意常数)
3.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2–x–6=0的一个根,则直线l与圆O的位置关系为( )
A.相切B.相交
C.相离D.不能确定
4.在Rt△ABC中,∠C=90°,若,则的值为( )
A.1B.C.D.
5.如图,一条公路的转弯处是一段圆弧,点是这段弧所在圆的圆心,,点是的中点,D是AB的中点,且,则这段弯路所在圆的半径为( )
A.B.C.D.
6.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数是( )
A.140°B.130°C.120°D.110°
7.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球
B.摸出的三个球中至少有一个球是白球
C.摸出的三个球中至少有两个球是黑球
D.摸出的三个球中至少有两个球是白球
8.为了解某地区九年级男生的身高情况,随取了该区100名九年级男生,他们的身高x(cm)统计如根据以上结果,抽查该地区一名九年级男生,估计他的身高不高于180cm的概率是( )
A.0.05B.0.38C.0.57D.0.95
9.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( )
A.B.C.D.
10.如果圆锥的底面半径为3,母线长为6,那么它的侧面积等于( )
A.9πB.18πC.24πD.36π
二、填空题(每小题3分,共24分)
11.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=_____.
12.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.
13.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.
14.二次函数的图象与y轴的交点坐标是__.
15.一元二次方程的解是_________.
16.如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:
①∠A始终为60°;
②当∠ABC=45°时,AE=EF;
③当△ABC为锐角三角形时,ED=;
④线段ED的垂直平分线必平分弦BC.
其中正确的结论是_____.(把你认为正确结论的序号都填上)
17.已知,则=__________.
18.计算:=______.
三、解答题(共66分)
19.(10分)中国古贤常说万物皆自然,而古希腊学者说万物皆数.同学们还记得我们最初接触的数就是“自然数”吧!在数的学习过程中,我们会对其中一些具有某种特性的自然数进行研究,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“喜数”.
定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的倍(为正整数),我们就说这个自然数是一个“喜数”.
例如:24就是一个“4喜数”,因为
25就不是一个“喜数”因为
(1)判断44和72是否是“喜数”?请说明理由;
(2)试讨论是否存在“7喜数”若存在请写出来,若不存在请说明理由.
20.(6分)如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转一定角度后能与△DFA重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)若AE=5cm,求四边形ABCD的面积.
21.(6分)如图,在矩形ABCD中,E是AD上的一点,沿CE将△CDE对折,点D刚好落在AB边的点F上.
(1)求证:△AEF∽△BFC.
(2)若AB=20cm,BC=16cm,求tan∠DCE.
22.(8分)车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.
(1)一辆车经过此收费站时,A通道通过的概率为 ;
(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.
23.(8分)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,过点B、点C分别作BE∥CD,CE∥BD.
(1)求证:四边形BECD是菱形;
(2)若∠A=60°,AC=,求菱形BECD的面积.
24.(8分)计算:—.
25.(10分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
请根据图表中所提供的信息,完成下列问题:
(1)表中________,________,样本成绩的中位数落在证明见解析________范围内;
(2)请把频数分布直方图补充完整;
(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在范围内的学生有多少人?
26.(10分)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.
(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;
(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、B
4、B
5、A
6、B
7、A
8、D
9、D
10、B
二、填空题(每小题3分,共24分)
11、7.1
12、1.
13、(0,0)
14、(0,3)
15、x1=0,x2=4
16、①②③④
17、
18、-1.
三、解答题(共66分)
19、(1)44不是一个“喜数”, 72是一个“8喜数”,理由见解析;(2)“7喜数”有4个:21、42、63、1
20、(1)点A为旋转中心;(1)旋转了90°或170°;(3)四边形ABCD的面积为15cm1.
21、(1)证明见解析;(2)
22、(1);(2)
23、(1)见解析;(2)面积=
24、-3
25、(1)8,20,;(2)见解析;(3)200人
26、(1)抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)﹣3<m<﹣1(3)当m=﹣时,S最大=
组别(cm)
x≤160
160<x≤170
170<x≤180
x>180
人数
15
42
38
5
广西河池市宜州区2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份广西河池市宜州区2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案,共9页。
广西昭平县2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份广西昭平县2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=,若3x=2y等内容,欢迎下载使用。
2023-2024学年广西壮族自治区南宁市广西大附属中学数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年广西壮族自治区南宁市广西大附属中学数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列事件属于必然事件的是等内容,欢迎下载使用。