2023-2024学年广西崇左市九年级数学第一学期期末经典试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
A.B.C.D.
2.对于反比例函数,下列说法错误的是( )
A.它的图象分别位于第二、四象限
B.它的图象关于成轴对称
C.若点,在该函数图像上,则
D.的值随值的增大而减小
3.如图,已知为的直径,点,在上,若,则( )
A.B.C.D.
4.如图,在平行四边形ABCD中,点M为AD边上一点,且,连接CM,对角线BD与CM相交于点N,若的面积等于3,则四边形ABNM的面积为
A.8B.9C.11D.12
5.如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c>0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是( )
A.2B.3C.4D.5
6.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于( )
A.8B.4C.10D.5
7.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为( )
A.7 : 12B.7 : 24C.13 : 36D.13 : 72
8.下列是中心对称图形但不是轴对称图形的是( )
A.B.C.D.
9.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是( )
A.B.
C.D.
10.若将抛物线y=- x2先向左平移3个单位,再向下平移2个单位,得到新的抛物线,则新抛物线的表达式是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.质地均匀的骰子,6个面上分别标有数字1,2,3,4,5,6.同时抛掷这样的两枚骰子,落地后朝上的两个面上的数字之和为4的倍数的概率为__________.
12.如图,在△ABC中,E,F分别为AB,AC的中点,则△AEF与△ABC的面积之比为 .
13.《算学宝鉴》中记载了我国数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为_________.
14.已知tan(α+15°)= ,则锐角α的度数为______°.
15.已知矩形ABCD,AB=3,AD=5,以点A为圆心,4为半径作圆,则点C与圆A的位置关系为 __________.
16.若正多边形的一个外角是45°,则该正多边形的边数是_________.
17.抛物线y=(x-2)2+3的顶点坐标是______.
18.在上午的某一时刻身高1.7米的小刚在地面上的影长为3.4米,同时一棵树在地面上的影子长12米,则树的高度为_____米.
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.
(1)求直线AC解析式;
(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;
(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.
20.(6分)已知方程是关于的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程的两个根之和等于两根之积,求的值.
21.(6分)阅读对话,解答问题:
(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;
(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.
22.(8分)如图,中,顶点的坐标是,轴,交轴于点,顶点的纵坐标是,的面积是.反比例函数的图象经过点和,求反比例函数的表达式.
23.(8分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.
(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;
(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.
24.(8分)在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=a+bx+c(a<0)经过点A,B,
(1)求a、b满足的关系式及c的值,
(2)当x<0时,若y=a+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,
(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,
25.(10分)已知如图所示,点到、、三点的距离均等于(为常数),到点的距离等于的所有点组成图形. 射线与射线关于对称,过点 C作于.
(1)依题意补全图形(保留作图痕迹);
(2)判断直线与图形的公共点个数并加以证明.
26.(10分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)
(1)分别求出y1、y2的函数关系式(不写自变量取值范围);
(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、C
4、C
5、B
6、D
7、B
8、A
9、C
10、A
二、填空题(每小题3分,共24分)
11、
12、3:3.
13、x(x-12)=864
14、15
15、点C在圆外
16、1;
17、(2,3)
18、1
三、解答题(共66分)
19、 (1)y=﹣x+5;(2)点F(,);四边形AFDE的面积的最大值为;(3)点N(0,),点P的运动路径最短距离=2+.
20、(1)详见解析;(2)1.
21、(1)详见解析;(2).
22、.
23、(1);(2)
24、(1)b=3a+1;c=3;(2);(3)点P的坐标为:(,)或(,)或(,)或(,).
25、(1)补全图形见解析;(2)直线与图形有一个公共点,证明见解析.
26、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.
2023-2024学年广西崇左市天等县数学九年级第一学期期末综合测试试题含答案: 这是一份2023-2024学年广西崇左市天等县数学九年级第一学期期末综合测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,要得到抛物线,可以将等内容,欢迎下载使用。
广西崇左市江州区2023-2024学年九年级数学第一学期期末学业水平测试试题含答案: 这是一份广西崇左市江州区2023-2024学年九年级数学第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,若点P等内容,欢迎下载使用。
广西省崇左市名校2023-2024学年九年级数学第一学期期末综合测试试题含答案: 这是一份广西省崇左市名校2023-2024学年九年级数学第一学期期末综合测试试题含答案,共6页。